TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

DISSERTATION

User-Guided Information Extraction
from Print-Oriented Documents

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

unter Anleitung von
0. Univ.-Prof. Dipl.-Ing. Dr. techn. Georg Gottlob,
Institut fir Informationssysteme (E184)
der Technischen Universitat Wien

eingereicht an der Technischen Universitat Wien,
Falkultat fur Informatik, durch

Tamir Hassan, MEng
Kolingasse 3/18
A-1090 Wien
Matrikelnummer: 0427489
geboren am 21.10.1981 in London

Wien, am 6. Mai 2010

Abstract

In recent years, a number of systems have been developed in the academic and
commercial domain for wrapping, or user-guided information extraction, from Web
sources. An important feature of Web documents is their inherent tree structure,
which is used by wrapping systems such as the Lixto Visual Wrapper to locate in-
stances of the data to be extracted. Because this tree structure somewhat represents
the logical structure of the content, such wrapping methods work successfully.

This dissertation is concerned with extending these wrapping techniques to PDF
documents. This is a challenging task, as the logical structure of a PDF is (usually) not
explicitly available in the file. The use of document analysis techniques to rediscover
this structure from the layout conventions that are used in the document’s presentation
is therefore a central theme of this thesis.

We present two approaches to wrapping PDF documents: the conversion approach
and the graph-based approach. The conversion approach is based on an automated,
structured conversion of PDF documents into HTML, which are then used as input
to the Lixto Visual Wrapper to extract the desired information. In this approach, we
place particular emphasis on detecting tables and representing them in a structured
manner in HTML.

The graph-based approach represents a novel method for specifying wrapping
programs directly on the physical structure of the document. Using an algorithm
based on subgraph isomorphism, other instances of the data are found. As this approach
is not reliant on the complete and accurate detection of structures in the document,
it is more robust and enables a much wider range of documents to be wrapped. Be-
cause the physical structure is more intuitive for the user, this approach also enables
wrapper programs to be created in a user friendly, interactive way.

Kurzfassung

In den letzten Jahren wurden sowohl im akademischen als auch im kommerziellen
Umfeld mehrere Systeme fiir Wrapping, d.h. benutzergeleitete Informationsextrakti-
on, von Webquellen entwickelt. Ein wichtiges Merkmal von Webdokumenten ist ihre
inhdrente Baumstruktur, welche von Wrappingsystemen wie dem Lixto Visual Wrap-
per benutzt wird, um Instanzen der zu extrahierenden Daten zu lokalisieren. Da diese
Baumstruktur der logischen Struktur des Inhalts einigermafen entspricht, konnen der-
artige Methoden erfolgreich funktionieren.

Diese Dissertation beschaftigt sich mit der Erweiterung dieser Wrapping-
Techniken auf druckorientierte Dokumente im PDF-Format. Diese Aufgabe stellt eine
grofie Herausforderung dar, da die logische Struktur eines PDFs (iiblicherweise) nicht
explizit in der Datei vorhanden ist. Der Einsatz von Techniken aus den Bereichen do-
cument analysis und document understanding bildet daher ein zentrales Thema dieser
Doktorarbeit, um diese Struktur in den in der Darstellung verwendeten Layoutkon-
ventionen wiederzuentdecken.

Zwei Ansitze fiir Wrapping von PDF-Dokumenten werden vorgestellt: der Kon-
vertierungsansatz und der graphbasierte Ansatz. Der Konvertierungsansatz beruht auf
der automatischen, strukturierten Konvertierung von PDF-Dokumenten in HTML,
welche nachfolgend mit dem Lixto Visual Wrapper bearbeitet werden, um die ge-
wiinschten Daten zu extrahieren. In diesem Ansatz wird der Schwerpunkt auf die
Erkennung von Tabellen und deren strukturierte Reprasentation in HTML gesetzt.

Mit dem graphbasierten Ansatz wurde eine ganz neue Methode fiir die Spezifi-
kation von Wrapper-Programmen direkt auf der physischen Struktur des Dokuments
geschaffen, welche mittels eines auf Subgraphisomorphismus basierten Verfahrens die
gewiinschten Daten extrahiert. Da dieser Ansatz nicht von einer vollstindigen, ge-
nauen Erkennung von Strukturen abhidnging ist, wird das Wrapping von einer gro-
leren Auswahl von Dokumenten mit geringerer Fehleranfalligkeit ermoglicht. Zu-
dem &hnelt die Graphstruktur der physischen Struktur des Dokuments, ist somit fiir
den Benutzer intuitiver zu verstehen und erlaubt die benutzerfreundliche, interaktive
Erstellung von Wrapper-Programmen.

Contents

1__Introduction|
(I.1 Background|

(1.4 Related approaches to wrapping PDF documents|

1. ntri

ionsofthethesis|

(1.6 Chapter summary|.,

2

Document analysis and understanding|

RI1 Introduction|
R2 Relatedworkl.
[2.2.1 Classical bottom-up pixel-based techniques|.
[2.2.2 Top-down projection profile based methods|
[2.2.3 Manhattan layout|. oo 000000
[2.2.4 Techniques for ASCIl documents|.
[2.2.5 Systems for analysing PDF documents|
[2.2.6 Document analysis as a computer vision task|.
227 Commercial softwarel.

Contents

3 A system for document analysis of PDF files|

3.1 Internal representationmodel|

BII

Coordinate system|

[3.1.2 Segmenttypes|.

[3.1.3 Adjacency graph representation|

3.3 Obtaining data from PDF|

B31

Pageobjects|

[3.3.2 Processing the page contents|

B321

Text and graphicsstate|

B322 Textelements.

B323

Graphicelements|

3.4 Pagesegmentation|

B4AI

Preprocessing: Initial merging of horizontally adjacent blocks| .

G

77

[3.4.3 The ordered-edge segmentation algorithm|

[3.4.4 Postprocessing|

3.5 Experimentalresults

B71

{4 Table recognition|

.2 Related work in table structure recognition|

.3 The table recognition algorithm|

E31

Vi

27
27
28
28
29
30
33
33
35
35
35
39
40

42
43
48
48
50
51
52

Contents

4.3.2.2 Rectangular containment expansion| 63

{4.3.3 Table validation and structure understanding| 64
4331 Columnfindingl 65

4332 Rowfinding| 65

333 Tablevalidationl 68

4.4 Experimental evaluation|o 000000 69
{4.4.1 Structure recognitionissues| 70
{4.4.2 A classitfication scheme for structure recognition errors| 71
{4.4.3 Ground truthingissues| 73
444 Aggregationofresults 0 0 0oL 77
4.4.5 Numerical results of both systems| 78
446 Discussion| 78
nclusionl 80
Wrapping using the Lixto Visual Developer| 83
p.1 Case study example: Statistik Austria| 84
[p.2 Step-by-step wrapper creation|. Lo 000 85
B3 Discussionl 87
The graph-based approach to wrapping 89
6.1 Background| oo 89
[6.2 Technical implementation] 91
[6.2.1 Creation of graph structures|. 91
[6.2.2 Introduction to graph matching{. 93
[6.2.3 The Ullmann algorithm| 95
[6.2.3.1 The refinement procedure| 98

[6.2.3.2 Initial experiments|. o 0L 98

(.3 Inexactmatching| 100
[6.3.1 Incomplete matching{. 100
[6.3.2 Multiple matchedges| 100

vii

Contents

(6.3.2.1 Multi-step matching algorithm| 101

[6.3.2.2 Performance issues of the multi-step algorithm| 102

[6.3.2.3 One-step matching algorithm| 104

[6.3.2.4 Two types of multiple matchedge|. 105

[6.4 Wrappercreation| L 106
[6.4.1 Interactive wrapping using the user interface|. 106

[6.4.2 Hierarchical wrapping| 109

6.0 Experiments 00 o o oo 110
651 Coastal Point Classifieds| 110

[6.5.2 Pink GmbH component catalogue| 111

(6.5.3 Travel Monthly archives|. 111

6.6 Discussionl 112
[6.7 Future directions in graph-based wrapping| 113
[7__Conclusions and further workl 117
[7.1 Comparison of the conversion and graph-based wrapping approaches| 118
[7.2 Further work: Addressing the discontinuity problem|. 119
Bibliography| 123
A Classification of errors in table recognition| 135
A1 Cellerrorsl 135
[A.1.1 Splittingerrors| 135

[Al2 Mergingerrors| 136

[A13 Othererrors 136

[A.2 Tableboundaryerrors|, . 138
[A.3 Classification totals for both systems| 141

viii

Chapter 1

Introduction

1.1 Background

A large amount of information is published nowadays on the Web not only in HTML
format, but also in poorly structured formats such as Portable Document Format (PDF).
We use the term poorly structured documents to refer to documents encoded digi-
tally in a visual form, which do not contain meta-information which explicitly de-
scribes their logical structure in sufficient detail to allow us to locate individual data
items for information extraction purposes.

This thesis is concerned with the development of new methods for extraction of
textual information from PDF documents. The PDF format is based on the printing
language PostScript, and is what we name a print-oriented format. Section [1.2|de-
scribes PDF in more detail. The widespread availability of PDF documents on the
Internet makes this an ideal format to investigate for data extraction purposes.

The methods described in this thesis could also be adapted to other print-oriented
formats, in particular PostScript, due to the similarities between the two formats.
Bitmap and vector images could also be described as unstructured, but they are less
commonly used to publish business-oriented data.

In order to obtain a rough idea about what we mean by logical structure, consider
the following questions which could be asked about a document:

e Is the document subdivided into sections? Does it contain separate articles, for
example?

e How do these sections interact with each other?

Chapter 1. Introduction

e How is the text structured? Is it set in columns? Where do paragraphs begin
and end?

e What is the reading order of the document?
e Are other structures, such as figures or tables, present?

e Does the document exhibit a hierarchical structure? (For example, does it con-
tain headings and sub-headings?)

It takes very little effort for a human reader to find answers to these questions for a
given document. Normally, just a quick glance at the page is required to recognize
its general structure, thanks to our cognitive perception abilities. Using a combina-
tion of hereditary and acquired knowledge, we can understand the structure of even
complex documents without significant effort.

In order to make such documents amenable to machine processing, this logical
structure needs to be made available in machine readable form. Document analysis
and understanding are the sub-fields of artificial intelligence which aim to model
some of these cognitive processes and reconstruct the logical structure of documents
based on their visual presentation, and many of the methods described in this thesis
are based on document understanding techniques. Chapter 2] describes these areas in
detail.

1.2 The PDF Format

Since the release of the first PDF specification in 1993, the PDF format has evolved
over the past two decades to become the de facto standard for sharing print-oriented
documents on the Web. Its success can be attributed to its roots—the PostScript
page description language—which gives ultimate control over the appearance of doc-
uments, and ensures that this appearance is preserved regardless of whether the doc-
ument is viewed on screen or paper, and regardless of operating system, installed
drivers or fonts, or printer hardware. In its early years, PDF was mainly popular in
desktop publishing workflow applications. Because of the popularity of PostScript
at the time, competitors such as Tumbleweed Envoy and Common Ground Digital Paper
soon disappeared from the market.

The advent of the World Wide Web led to a dramatic increase in the amount of
documents being exchanged electronically. Unfortunately, HTML, the main format of
the Web, had—and still has—the following major drawbacks:

1.2. The PDF Format

e it is content oriented, meaning that the structure of the content is, or at least
should be, defined explicitly in the code (although many current websites do
not do this). As a hypertext document format, HTML was designed with the
idea that different computing platforms would adapt the final layout depend-
ing upon screen size and configuration. This is of great benefit to data extraction
applications, but ...

e the conversion of print-oriented documents into HTML is not straightforward
and is (if at all possible) time-consuming;

e the output quality of HTML documents when printed (e.g. using a web
browser) is not high enough for most professional applications. Perhaps this
is because HTML has its roots in the scientific community, and not the publish-
ing community.

The print-oriented nature of PDF does, however, have its own drawbacks. At the
time of its creation, nobody could have foreseen the explosive growth of PDF as a
format for document interchange on the Web. In comparison to HTML, the logical
structure is, in most cases, not explicitly present in the document. In this sense, PDF
is closer to a graphic than a hypertext document. Whereas in HTML it is possible to
parse the source code to find the locations of certain structures such as headings and
tables, such machine-readable information is usually missing from PDF files. This
logical structure information is critical for automatic data extraction, and is also useful
for applications such as search, indexing and accessibility for disabled persons or
mobile devices. Later versions of the PDF format have attempted to get around this
limitation by providing support for tagging [Johnson|2005 (Web)||, but the fact remains
that the vast majority of PDF files either do not include such meta-information, or this
information is not rich enough to enable us to locate the data instances to be extracted.
The process by which most PDFs are created is still based on printing the document
to a virtual printer driver, which strips the document of all its meta-information. Any
logical information must then be added manually after the PDF file has been created.

The up-and-coming PDF format was around at the right time to fill this niche, en-
abling documents to be published to the Web as easily as sending them to the printer,
with the assurance that the layout and appearance will remain the same, regardless of
computing platform. To help increase takeup, Adobe soon dropped the initial charge
for the Acrobat Reader (now simply named Reader) software to view PDF files. As
Adobe has always published the full specification of the PDF format [Adobe Systems
Inc.[2009 (Web)], third-party applications also exist for viewing and manipulating
PDF files. Since 2008, PDF is a published ISO standard.

Chapter 1. Introduction

1.3 Information extraction on the Web

The motivation of this work stems from information extraction on the Web. There are
a large number of business applications that rely on the mass collection, aggregation
and processing of data from the Web. However, the lack of structure of web infor-
mation sources presents significant difficulties to their use in information retrieval
systems. In the course of the previous decade, a large number of systems have ap-
peared, both academic and commercial, for wrapping this data from the Web; this
means navigating the data source, semi-automatically extracting the data and trans-
forming it into a form suitable for data processing applications. Chang et al. provide
the following definition of a wrapper program:

Programs that perform the task of IE [information extraction] are referred
to as extractors or wrappers. A wrapper was originally defined as a com-
ponent in an information integration system which aims at providing a
single uniform query interface to access multiple information sources. In
an information integration system, a wrapper is generally a program that
“wraps” an information source (e.g., a database server or a Web server)
such that the information integration system can access that information
source without changing its core query answering mechanism. In the case
where the information source is a Web server, a wrapper must query the
Web server to collect the resulting pages via HTTP protocols, perform in-
formation extraction to extract the contents in the HTML documents, and
finally integrate with other data sources. Among the three procedures, in-
formation extraction has received most attention and some use wrappers
to denote extractor programs. ([Chang et al.[2006], p. 1 [1411])

There are a number of ways to classify wrapping systems. [Tatbul et al.2001] pro-
poses three classifications based on how the specification files are generated: manual,
automatic and semi-automatic. Manual techniques require the use of a wrapper pro-
gramming language such as PiLLoW [Cabeza and Hermenegildo 2001] or Jedi [Huck
et al. 1998] and have fallen out of popularity in recent years, as construction and main-
tenance of wrappers is time-consuming and their specification language presents a
significant learning curve.

Fully automatic systems generate wrappers without any user input. The Road-
Runner approach [Crescenzi et al.|2001] employs a matching technique to generate a
wrapper based on several examples of documents from the same class and therefore
does not require any labelled examples. ExAlg [Arasu and Garcia-Molina2003]] works
in a similar fashion. The MDR (Mining Data Records) approach uses string-matching

4

1.3. Information extraction on the Web

[Liu et al.2003|] and partial tree alignment [Zhai and Liu2005] techniques to locate ex-
amples of repeating data records on a Web page. The work of [Embley et al.[1999] uses
an ontological model for a specific domain to extract data from arbitrary Web pages
about this domain. In general, the advantage of fully automatic approaches is that
they can be applied to any arbitrary document that has not been encountered before.
However, they are neither as precise, nor can they extract such detailed information
as semi-automatic approaches.

Semi-automatic systems allow the generation of wrappers based on user input.
These approaches can broadly be split up into systems based on wrapper induc-
tion and systems based on wrapper specification. There is currently a wide range
of wrapper induction systems in the literature, such as WIEN [Kushmerick et al.[1997],
SoftMealy [Hsu and Chang||1999] and Stalker [Muslea et al.|1998], which use machine
learning techniques to generate a wrapper program from a set of training examples
provided by the user. In systems based on wrapper specification, the user is directly
involved in programmatically creating the wrapper. In contrast to manual systems,
wrappers are usually generated based on a few examples in an intuitive and inter-
active fashion. Examples of such systems include Lixto [Baumgartner et al. 2001],
DEByE [Laender et al.|2002a]] and Wargo [Raposo et al.|[2002].

Semi-automatic approaches have also been referred to as supervised approaches in
the literature. In order to clarify the distinction between approaches using supervised
learning or wrapper induction and approaches based on wrapper specification, we refer
to the latter as user-guided wrapper generation. These approaches could be seen as
combining the power and precision of manual approaches with the user-friendliness
and shallow learning curve of automatic systems.

Another distinguishing feature of wrapping systems is the underlying structure
or representation of the Web content on which the extraction is performed. Whereas
older systems such as Stalker work on a flattened representation of the HTML con-
tent, newer approaches such as Lixto work directly on the DOM tree, and are there-
fore arguably better suited for HTML pages. The MDR approach described above
features both approaches. A third class of systems uses spatial (and other) relations
to locate the desired data instances. Examples include the work of [Kriipl et al.2005],
Embley et al. (as described above) and our graph-based approach to wrapping PDF
documents [Hassan 2009c], which is described in Chapter E] of this dissertation.

Many of these approaches such as Lixto, Wargo and Fetch (based on Stalker),
which started out in the academic domain, are now fully fledged commercial prod-
ucts. In this thesis we will concentrate on the Lixto suite of products, which comprise
an interactive wrapping system to extract data from HTML files on the Web, and are
originally a product of research at our institute.

Chapter 1. Introduction

In this section, we have provided a brief overview of web information extraction
approaches related to our task of wrapping PDF documents. A widely cited taxon-
omy for characterizing Web data extraction tools is provided in [Laender et al.|2002b];
this survey also provides an excellent summary of work in this field up to its publi-
cation date. More recent summaries include [Chang et al.|2006; Ferrara and Fiumara
2010; Baumgartner et al.2009].

The Lixto Visual Developer enables a non-expert user to create wrapping programs
in a predominantly visual and interactive fashion by clicking on example instances
on a visual rendition of the web page. In the background, the program locates the se-
lected data on the HTML parse tree, a hierarchical representation of the page’s source
code. The path to the data is then generalized so that repeated instances of the data
are found. These instances are then displayed to the user. The user can then fine-tune
the selected data by adding or removing logical conditions. The system then gener-
ates a program in Elog [Baumgartner et al. 2001], a declarative logic-based language,
to automatically extract this data from similarly structured sources, or from sources
whose content changes over time.

The approaches described in this section, including Lixto, are primarily designed
with HTML documents in mind. In this thesis, we are concerned with the following
research question:

How can user-guided information extraction methods be applied to un-
structured documents such as PDF files?

Unfortunately, this is a difficult task. As mentioned in Section[1.2) HTML documents
are inherently structured—and this structure somewhat represents the document’s
logical structure—enabling us to use this structure to locate wrapping instances. In
most PDF files, this logical structure is not explicitly present, and we therefore need
to resort to approaches based on document analysis to rediscover this structure and
allow us to locate the data to be wrapped.

1.4 Related approaches to wrapping PDF documents

The approaches discussed in Section [1.3| are all geared towards information extrac-
tion from HTML documents. Wrapping from PDF, or other types of print-oriented
documents, is a much less researched task. When we began addressing this issue in
2005, we knew of no prior work on user-guided data extraction from PDF. In 2006, the
theoretical foundations of a method for wrapping PDF documents were proposed in

1.5. Contributions of the thesis

[Flesca et al.[2006]], followed by a publication in 2008 with experimental results [Fazz-
inga et al.2008]. In this method, a wrapper is defined as a set of hierarchically nested
fuzzy logic conditions.

This method can be seen as being analogous to the graph-based approach de-
scribed in Chapter|[6} as the wrapping is performed directly on a set of blocks (which
the paper names fokens) derived from the geometric structure of the document. The
preprocessing steps necessary to obtain these tokens are not described. Compared
to the graph-based approach, the wrapper specification language is more expressive,
as potentially any conditions between tokens can be defined. However, because of
this, defining a wrapper is also a much more complex task. In contrast, the under-
lying structure of the document in the graph-based approach is more intuitive, and
creating a wrapper requires little more than selecting a single example instance.

Both systems have published experimental results, which show their applicability
to a wide range of data extraction tasks. Both systems can also be extended by defin-
ing new predicates or by linking them to an ontology. An interesting feature of Flesca
etal.’s system is the use of fuzzy logic to cope with the inaccuracies of document anal-
ysis and increase overall robustness. It would be interesting to also see test results of
the system using only regular bivalent logic to see the extent of the improvement pro-
vided by fuzzy logic. In a similar way, we propose future work in the investigation
of error tolerant graph matching methods Section[6.7]to improve the robustness of our
methods.

In the document analysis field, the table analysis method proposed in [Green and
Krishnamoorthy|1995], in which predefined table structure models are overlaid on a
scanned image of a page, is also worthy of mention, as it could also be seen as a sort
of wrapping system.

The work in this thesis deals with several fields of research, most notably document
analysis and understanding, but also table structure recognition. Related work in these
fields is described in Sections[2.2]and [4.2] respectively.

1.5 Contributions of the thesis

In this dissertation, two new approaches to user-guided data extraction from PDF
documents are proposed and investigated, which will hereafter be referred to as the
conversion approach and the graph-based approach:

e The conversion approach is based on a conversion from PDF into (XYHTML, in
which structures such as lines, paragraphs, headings and tables are automat-

Chapter 1. Introduction

ically detected. The resulting XHTML file is then used as input to the Lixto
Visual Wrapper, and wrapping proceeds in the same way as on a web page.

e The graph-based approach is designed to overcome some of the drawbacks of
the intermediate HTML representation by working more directly on the docu-
ment’s visual structure. We extend our graph-based representation originally
developed to aid page segmentation and locate data instances using an algo-
rithm based on subgraph isomorphism.

Before work on this dissertation began, the problem of wrapping print-oriented doc-
uments had not been addressed before in scientific literature, to our knowledge. The
graph-based approach was first proposed in the poster paper [Hassan and Baum-
gartner|2006]. Together with [Flesca et al.|2006], these represent the first systems for
wrapping PDF documents which exploit the document’s physical structure.

The conversion and graph-based approaches have been implemented as proto-
types and are evaluated in this thesis. Whereas the conversion approach is a novel
application of existing concepts, methods and algorithms, the graph-based approach
presents a completely new, innovative method for supervised, interactive data extrac-
tion for poorly structured documents, which is much better suited to the intricacies
of locating data items from print-oriented formats such as PDF.

Both of these approaches are underpinned by methods and algorithms in docu-
ment analysis and understanding, and this topic forms the second main focus of the the-
sis. We have built a prototyping framework, PDF Analyser, to open a PDF file, extract
page items as objects, perform segmentation, detect tables and display the output vi-
sually, overlaid on a bitmap rendition of the page. This output can then be written to
XHTML (for the conversion approach) or displayed as a graph (for the graph-based
approach). A number of novel methods and algorithms have arisen from this work,
many of which have also been published in international conferences and workshops:

e an algorithm for table detection and structure recognition from PDF documents
is described in Chapter 4] This is based on our paper at ICDAR 2007 [Hassan
and Baumgartner|2007];

e the above algorithm was also compared to another system in the literature [Ruf-
folo and Oro|2009]. Several issues were encountered in the evaluation and com-
parison process, which made it difficult to ensure a fair comparison of both
systems. These issues are documented in Section[4.4and Appendix[Al A publi-
cation about these issues is also planned in a future workshop;

e new techniques have been developed for working with PDF files at the object
level; we have developed a method which parses the PDF file and determines

1.6. Chapter summary

Conversion approach

[Tl oo ; Table recognition | XHTML | Wrapping using the
. : Chanter 4 Lixto Visual Developer
P Chapter 5

Object-level extraction Page segmentation

PDF Section 3.3 Section 3.4

\ Werapping using
i

: graph matching Y IV
B e R L LR Rl ‘ Chapter 6

Document analysis (Chapters 2-3)

Graph-based approach

Figure 1.1: Outline of the two approaches to wrapping from PDF

which objects are important for document analysis and distinguishes between
structural and graphic objects (see Section [3.3); Section [3.4 presents our ordered-
edge segmentation algorithm, an efficient, robust, bottom-up approach to page
segmentation, which takes advantage of the fact that higher-level knowledge
about the page is only available towards the end of the segmentation process,
and is shown to provide very good results, even on complex documents. Both of
these document analysis techniques were published in our DocEng 2009 paper
[Hassan|2009al;

e the graph-based approach to wrapping (Chapter@ has been shown to perform
accurately and be applicable to a variety of application scenarios. The approach
was first proposed in a poster paper at WWW 2006 [Hassan and Baumgartner
2006] and the algorithm and experimental results were published at ICDAR
2009 [Hassan/2009¢c]. The prototype system GraphWrap was presented at the
stand of the Austrian Computer Society at CeBIT 2009 and demonstrated at
DocEng 2009 [Hassan 2009b].

1.6 Chapter summary

The conceptual structure of both wrapping approaches, including the relevant chap-
ters and sections for each stage of wrapping process, is shown in Figure As both
approaches are underpinned by document analysis techniques, their first stages of
processing are identical, and these steps are documented in Chapter 3l This chapter
also introduces the PDF Analyser framework, which is used for prototyping and visu-
alization of results throughout the thesis. Chapter [2|introduces the fields of document
analysis and document understanding and provides an overview of related work.

The next two chapters are concerned with the conversion approach to wrapping:
Chapter [describes our work on table detection and structure recognition, an essential

9

Chapter 1. Introduction

stage in this approach. An experimental evaluation of our algorithm is provided,
and our system is compared with another system in the literature [Rutfolo and Oro
2009]. Chapter [|introduces the Lixto Visual Developer and demonstrates by means of
an example how the conversion approach can be used to wrap tabular data from PDF
files. An appraisal of this approach is provided.

Chapter [6] introduces the graph-based approach to wrapping, including a sum-
mary of related work, a technical description of our algorithm and experimental re-
sults on three examples of wrappers that were generated by the current prototype sys-
tem, GraphWrap. The GUI, which is built upon the PDF Analyser framework described
earlier, is introduced, which enables a non-expert user to interactively generate such
wrappers in minutes.

Finally, Chapter [7] presents a comparison of both wrapping approaches and sum-
marizes the general directions in which this work could be developed further. Further
work relating specifically to the graph-based approach is also proposed in Section[6.7}

10

Chapter 2

Document analysis and
understanding

In this chapter, we introduce the research areas of document analysis and document un-
derstanding and describe related work in both fields. Based on an analysis of this work,
we draw conclusions which influence the design of our prototype system described
in the following chapter.

2.1 Introduction

A human reader is able to look at an arbitrary page and intuitively recognize its
structure—the boundaries of individual structuring elements such as headings, para-
graph text and images and whether these objects are nested or somehow hierarchi-
cally structured; the reading order of text areas on the page—and can also determine
more complex relationships from data displayed in tabular form. Through both na-
ture and nurture, we are able to detect these structural relationships effortlessly using
the various layout conventions that have been used in the document’s presentation.
These elements together make up the logical structure of the document, which is
of prime importance for a large number of document processing tasks, not least for
information extraction.

In the past few decades, document processing has become a widely researched
tield, both in academia and, more recently, in the commercial software environment.
In this period, the terminology used in the literature has somewhat varied. In this
thesis, we will use the terms document analysis and understanding as defined by Klink
et al., whose definitions we find correspond to those most commonly used in recent
literature:

11

Chapter 2. Document analysis and understanding

Document processing can be divided into two stages: document analy-
sis and document understanding. A document has two structures, namely
the geometric (layout) structure and the logical structure. Extraction of
the layout structure from a document is referred to [as] document analy-
sis. Mapping the layout structure into a logical structure is referred to [as]
document understanding. ([Klink et al.2000], p. 1)

To clarify, we refer to document analysis as the transformation of a document from
its source form (such as PDF or paper) into an initial geometric (or physical) struc-
ture in machine readable form, where each page is represented as a set of low-level
blocks with Cartesian coordinates. These blocks generally represent areas, or zones,
which are somehow visually distinct or separate from each other, for example due to
a different font being used or due to separation by whitespace or ruling lines. From
this representation, geometric relationships, such as adjacency, can easily be deduced.

In order to form these blocks, a segmentation algorithm is used to segment the
page (or “cluster” it bottom-up) into an initial set of blocks suitable for further pro-
cessing. It is worth noting that the precise granularity of these blocks is not defined
at this stage and may vary depending on the source document format, the segmen-
tation algorithm being used and the visual content of the document. For example,
if extra whitespace is present between paragraphs of text, many segmentation algo-
rithms will likely output these paragraphs as separate blocks. If no extra whitespace
is present (only indentations, for example), the paragraphs will be merged together.
Generally, undersegmentation, i.e. when two logically separate objects (e.g. two sepa-
rate columns of text) are clustered together, results in extensive postprocessing oper-
ations being necessary and should therefore be avoided where possible.

Document understanding is the further processing of these initially segmented
blocks to reconstruct logical structure information about the page. From the perspec-
tive of dealing with scanned images of documents, Haralick describes logical (page)
structure recognition, or document understanding, as:

Logical Page Structure [recognition] involves determining the type of
page (page classification) assigning functional labels to each block of the
page, and ordering the text blocks according to their read order. ([Haralick
1994], p. 4 [388])

Tsujimoto and Asada provide the following definition of logical structure:

... the logical structure describes the configuration of articles and the
semantic relationship between components of the articles. Reading order

12

2.1. Introduction

can be derived from the logical structure. We define the transformation of
a geometric structure into a logical structure as document understanding.
It should be noted here that the reverse transformation is not unique, be-
cause a logical structure corresponds to a variety of geometric structures.
([Tsujimoto and Asada|1990], p. 2 [552])

Whereas the main goal of the document analysis part of the process has always re-
mained the same—to segment the pages of the document into blocks—there is a great
variation in the particular logical structures that are discovered by the various docu-
ment processing systems reported in the literature. Some systems, such as [Hadjar
et al.|2004], restrict themselves entirely to geometric structures and do not extract any
logical information at all. Many document-generic systems working on scanned im-
ages, such as [Aiello et al.[2002], categorize the blocks and attempt to find the reading
order between these blocks. Other systems, such as [Rus and Summers 1997], do
not restrict themselves to flat structures and attempt to discover hierarchical structures
within the document.

Aiello et al. also distinguish between specific and generic document processing sys-
tems, the latter accepting a much broader class of documents as input, but returning
only generic structuring elements that are common to most documents. Common
classes of documents addressed by specialized systems include forms (e.g. [Cesarini
et al|[1998]]) and tables. In this section, we concentrate on systems designed for a
broad class of documents. Sectiond.2]describes systems which have been designed to
detect and understand the structure of tables.

Although document analysis and understanding have traditionally been viewed
as separate processes, it is often a grey area whether certain derived structures are
geometric or logical. For example, paragraphs, which are logical structuring elements,
often correspond to the distinct physical blocks returned by the segmentation algo-
rithm. In a document, physical and logical knowledge are inherently interlinked and
there is no clear boundary between document analysis and document understanding.
This applies even more to tables, where the grouping of individual cells into rows and
columns (which we refer to as table structure understanding) could be seen as a logical
step. But in fact, the row-and-column structure of a table is also very much a phys-
ical structure, and researchers working in the area of table interpretation go one step
further and aim to find out the abstract logical relations that a table presents. With
this information, the same table can even be presented differently. This is described
in more detail in Section [4.1]

In the literature, the terminology is not always consistent. Earlier publications
from the OCR community working on scanned images generally used the terms doc-
ument image analysis and document image understanding, before the term image was

13

Chapter 2. Document analysis and understanding

dropped when other input formats started being investigated. Sometimes, one of
these terms is used to refer to the entire process. For example, Schiirmann et al. use
the term document analysis to refer to both the analysis and understanding steps of
document processing;:

Document analysis aims at the transformation of any information pre-
sented on paper and addressed to human comprehension into an equiva-
lent symbolic representation accessible to any kind of computer informa-
tion processing. ([Schiirmann et al.[1992], p. 1 [1101])

Finally, it is also important to raise the distinction between the logical structure and
the semantic structure of a document: the term logical structure relates to how the indi-
vidual elements functionally relate to each other—their purpose in the context of the
document’s structure. It is not concerned with the meanings of individual words or
the subject matter of the document itself.

The diagram in Figure[2.T[shows how a document can be represented in a number
of different levels of abstraction, from the top-level semantic view in the author’s mind,
before a single word is put to paper, to the finished product; a bitmap image on the
printed page. It is worth noting that PDFs are already at a higher level of abstrac-
tion than scanned images. The level in which common word processing and DTP
packages (such as Microsoft Word or Adobe InDesign) represent a document lies some-
where in between. Because of the ubiquity of the word processor today, we believe
that the design of everyday software such as Word has also somewhat influenced the
development of document understanding systems.

The process of document analysis and understanding can therefore be seen as the
reverse of the document authoring process; we are trying to rediscover the logical
structure from the document’s physical layout. Aiello et al. provide the following
definition of document analysis (note that, as with Schiirmann et al., they also use
the term document analysis to refer to the entire process of document analysis and
document understanding):

Document analysis can be viewed as reversing the process of docu-
ment authoring. It is therefore important to consider the choices an au-
thor makes. In the creation process, the author starts with a rough idea
about the content. The author then structures his/her thoughts by consid-
ering the logical organization of the material, e.g., dividing the material
in chapters and deciding on the intended reading order. When the final
digital document is printed on paper, the underlying logical structure of
the document is obscured by the actual layout conventions. The author

14

2.2. Related work

Document authoring

Semantic knowledge

Document structure
knowledge

Typical word processors
and DTP applications

Low-level geometric
structure (e.g. TEX)

Page description language
(e.g. PDF, PostScript, PCL)

Bitmap image
(or printed page)

Document analysis
and understanding

Figure 2.1: Document representation hierarchy

has, however, the possibility to encode some of the logical information us-
ing layout typesetting conventions, e.g., by using a specific font size, style
and arrangement on the page. Therefore, the layout structure of a printed

document carries, besides the artistic message, some information about
the logical structure. ([Aiello et al.|[2002], p. 1)

2.2 Related work

15

The remainder of this chapter gives an overview of related work in the literature on
document analysis and understanding.

In this section, we discuss existing approaches to document analysis and understand-
ing. As the format of the input data plays a vital role in the design of these approaches,
we group them by the input format they accept. We concentrate on methods that are
applicable to a broad class of documents and place particular emphasis on the doc-
ument analysis phase of the process as per our definition in Section Please note
that the topic of table recognition is covered in detail in Section] In this section,
we only briefly mention some table recognition systems from the perspective of their
approaches to document analysis (in particular, page segmentation).

Chapter 2. Document analysis and understanding

2.2.1 Classical bottom-up pixel-based techniques

The term document (image) analysis has its origins in the OCR community, and there
is a huge amount of literature describing document analysis systems that work on
scanned images of pages. Examples of such systems are [Aiello et al.|2002; Altamura
et al. 2001; Schiirmann et al.[1992; Nagy et al.|[1992; Shari [1986]. The vast majority
of such systems use a bottom-up segmentation process: the image is first deskewed
and binarized (or thresholded), and segmentation then is performed using pixel-based
operations such as variants of the run-length smoothing algorithm (RLSA) [Wong et al.
1982] followed by connected component analysis.

Bottom-up techniques are very sensitive to local formatting changes in the docu-
ment. As stated in [Randen and Husey|1994] (p.1), “the run length smoothing method
is sensitive to font-size, character spacing, line and column spacing and to some ex-
tent the orientation of the document.” The run-length smoothing algorithm effec-
tively segments the blocks using a given distance threshold. The ideal value of this
threshold can depend on scanning resolution, relative darkness of the original print,
as well as the type of document itself.

2.2.2 Top-down projection profile based methods

Earlier segmentation algorithms include top-down methods such as the recursive X-Y
cut approach [Nagy and Seth|[1984; Ha et al.|[1995]. In this method, the page is recur-
sively “cut” in half across a visually salient boundary, usually whitespace or a ruling
line. Haralick et al. use horizontal and vertical projection profile methods such as
the whitespace density graph (see Figure to look for these salient divisions. Using
heuristics, the most prominent division (e.g. widest peak in the graph) is found. In
order to speed up computation, this method can be approximated by using bounding
boxes of connected components, which are assumed to be filled uniformly with black
pixels.

The main weakness of this approach is that it is not able to segment all page lay-
outs completely. Specifically, the page layout must be X-Y decomposable. To illustrate
this weakness, the results of our initial experiments with the X-Y cut algorithm and
a bottom-up approach are shown in Figures [2.3|and The main advantage of the
X-Y cut algorithm is that it inherently generates a hierarchical structure, which via
a number of relatively simple merging operations can be made to correspond to the
logical structure of the document.

[Tsujimoto and Asada|(1990; Ishitani|2003; Déjean and Meunier|2006] perform a hi-
erarchical decomposition of the document image. Whereas Tsujimoto and Asada use

16

2.2. Related work

Page 1 ffom 04104105 Third MONDAY THIRD, at 10:53PM, 04103105 by di

. . J
- -
Heraldaadzz=Cribune

THENEW YORK TIMES

Huge crowds share in somber pageantry
A public end for an extraordinary papacy
S e > | BI\ 7 Private viewing in Vatican;
Pilgrims converge for rites

s| Start of a life’s journey

A town remembers its mos

Spanish cardinal fills empty seat

78-year-old becomes
- interim Vatican chicf

UPDATE

Daring to create

‘.... ® ...‘

0_; —‘ f 0 M N N
LT V22t VSN G, Nl

1 52 103 154 205 256 307 358 409 460 511 562 613 664 715 766 817 868 919 970 1021 1072

Figure 2.2: An example of the horizontal whitespace density graph of a newspaper page

17

Chapter 2. Document analysis and understanding

INHEL
T

f\s.’.sn)
o g -

In Europe, division
‘among old and new

In Europe, division
among old and new

2 hostages
freed from
their long
Iraq ordeal

Figure 2.3: Front page of the International Herald Tribune newspaper (left) with its
successful top-down segmentation (right)

L . 4

THE DEATH OF JOHN PAUL Il
INTERNATIONAL

Herald.aize-Tribune

s

s share n somber pagear

an extraord

T DEATH OF JORN PAUL T

EELISL

ol

11T

[A public end for an extraordinary papacy

oy VAT,
o for s

Figure 2.4: Front page of another issue of the International Herald Tribune (left), whose
layout is not X-Y decomposable. Top-down segmentation (centre) fails to completely
segment the page (the bottom-left quadrant is not segmented), whereas bottom-up
clustering (right) succeeds

18

2.2. Related work

a more complex tree-based technique (which also copes with non-X-Y-decomposable
layouts), the approaches of Ishitani and of Déjean and Meunier use techniques based
on the X-Y cut algorithm. Ishitani introduces a technique, termed an exceptional X-Y
cut, to successfully decompose layouts which are not X-Y decomposable. Using the
X-Y decomposition, [Meunier 2005] also determines the reading order. Typically,
these techniques are useful in more complex layouts, such as newspapers, which
contain several articles on the page arranged in a hierarchical structure. The sys-
tem proposed in [Hadjar et al.[2004] also groups individual blocks into articles before
performing reading order detection, although the precise method is not described.

2.2.3 Manhattan layout

Bottom-up segmentation approaches are generally not restricted to any particular
types of layout. In fact, they are theoretically able to segment any arbitrary two-
dimensional shapes. However, as documents by convention are generally composed
of rectangular blocks, most document analysis systems restrict themselves to “Man-
hattan” or “near-Manhattan” layouts, as shown in Figure We have also taken
this approach in developing our segmentation algorithm as described in Section
Haralick provides the following definition of Manhattan layout:

A Manhattan page layout is one where the regions of the page layout
are all rectangular and the rectangles are in the same orientation. Hence
after an appropriate page rotation the sides of the rectangles will all be
either horizontal or vertical. Furthermore, each pair of rectangles either is
mutually exclusive or one contains the other. ([Haralick|1994], p. 1 [386])

Algorithms designed for Manhattan layouts generally fail when run on rotated,
or skewed documents. This problem is a common occurrence in scanned documents,
and there is an extensive body of literature that deals just with the problem of skew
detection (a good summary can be found in [Nagy|2000]). Fortunately, for the digitally
generated PDF documents that we encounter, this is not an issue.

2.2.4 Techniques for ASCIlI documents

A number of publications report on systems that process documents in ASCII for-
mat (and similar fixed-width text formats). As the ASCII format allows only a very
restricted range of layout conventions to be used, some of which are specific to this
format, such techniques cannot be applied directly to PDF documents. The work in
[Rus and Summers|1997]] uses a bottom-up method to merge lines of text, as obtained

19

Chapter 2. Document analysis and understanding

. By Alan Cowell den
d pop j . o

nmlgrants embrace ope % LONDON: Prime Minister Tony sect
= SCTH i | B e
= zsiiz“:g*:ﬁz:;‘z:;ﬁxr:;t:‘;;‘:ﬁ:‘~‘§; B T Ry L gt .
eeming their children. He brought to 155 a drea Cliycko. ceremony umu Va join the 1nvasion OfIraq as the war By Ric
YRS ek i b ool wemed | Sy e gt ST | Sma emerged for the first time as a
i |y b el PGt [l p panbowid SWellieg | eontmltion thec leading issue in Britain's election ~ BERLI
] P e] e e ol ppcebeone i | Rlateanden campaign. Joschk
e B s B i o Arasm it 1 ok 17 o0 ooy = vk o e Ten days before the vote, though, ~ al, all-
= :;E;.‘;;"y sittr in Rome for the past Sqmiﬂg;jggags = i it remained unclear whether the admitt
s B AR et ingering dhscusy pustng
ks ff':;%ﬁnb;;,:‘:%;. ,,5 '2; o o e ?:x.‘.‘{"z.:‘ hich d d
e B e o B s] rz’ﬁgmmmasim.w:m which damage ted to
A e e e o ContmmaizaEagd % Blair’s credibili- the Uk
ways be ity and left many But!
1 Rome: . . . | Britons mistrust- lorin C
=& Spanish cardinal fills empty se: Fus o
Ragey Dutlmescobo _______ 78-year-old becomes S VR o would reduce the ings tc
nichis ROME: TheRegimeoftheVesunt S ingerim Vatican chief S bt i clear lead he has established in ~ many
e e e AT T TSR | a i e opinion surveys over his main the aff
o E‘l%l:l':é\%uc ot governed the Roman ahqﬁu&adﬁ{‘ﬁa#gﬁseﬁﬂa: %ﬂa\mm?{mg;ﬁ & challenger, Michael Howard of the pppost}
Toer Lol e g cnpily . Snd o Bl e e of of he chuh oy | & Conservative Party. e L80!

Figure 2.5: The example on the left has a strict Manhattan layout. The layout on the
right is what we term near-Manhattan: because of the inset graphic, the conditions for
strict Manhattan layout have been breached, but bottom-up segmentation can still be
performed

from an OCR package, into a hierarchical structure based on repeating indentation
patterns. This technique assumes no prior knowledge about the formatting conven-
tions being used. Multi-column and more complex layouts are not addressed, and are
a rarity in this format. This paper also describes techniques for table detection and
graphics recognition.

Kieninger et al. report on systems which detect tables in ASCII documents
[Kieninger [1998; Klink et al.[2000; Kieninger and Dengel 1998b]. Their work is de-
scribed in more detail in Section They describe a bottom-up segmentation algo-
rithm based on vertical neighbourhoods: due to what we term the brickwork effect (see
Section 3.4.2), entire blocks of text can be built up this way. Because of the robust-
ness of their method and its ability to also cope with layouts which are not strictly
Manhattan, we have used some of their techniques in the development of our own
segmentation algorithm (see Section [3.4).

2.2.5 Systems for analysing PDF documents

More recently, the PDF format has started to gain attention from researchers in docu-
ment analysis. The bottom-up segmentation techniques using pixel-based operations
as described at the beginning of this section could, of course, also be applied to a
bitmap rendition of PDF, as in [Hadjar et al.[2004]. Compared to a scanned image, the
rendition of a PDF is much “cleaner”; there is no noise and problems such as find-

20

2.2. Related work

ing an appropriate threshold for binarization and deskewing do not exist. However,
in developing our system we have taken the view that analysing images of PDF files
where the object data is available is taking a step backwards: the rasterization process
can still introduce errors and creates unnecessary processing overhead. Furthermore,
additional information created during creation of the PDF is lost (see Section [3.7).

A notable early publication which deals with PDF files is [Lovegrove and Brails-
tord|1995]. Here, segmentation is performed bottom-up using grouping algorithms
on text extracted directly from the PDF data using the Acrobat SDK. [Anjewierden
2001] describes a method in which text and graphic objects are extracted from the
PDF using a method built on top of the xpdf library, which includes some segmenta-
tion heuristics. [Déjean and Meunier|[2006] uses a similar method for extracting the
low-level objects from PDFE. Unfortunately, neither paper describes in detail how the
low-level text and graphic instructions are processed to generate the resulting objects.
Our paper [Hassan|2009a] is intended to fill this gap in the literature. [Hadjar et al.
2004] also introduces a system for analysing PDF, but uses a bitmap image to perform
segmentation. The text is obtained using a libraryﬂ and matched at a later stage to the
results of the layout analysis.

[Chao and Fan|2004] describes a hybrid method in which a combination of object-
level and bitmap processing is used: text and image objects are obtained directly from
the PDF code, whereas lines and vector objects are obtained from a bitmap image. A
bottom-up segmentation algorithm, which works on rectangular text blocks obtained
from the PDF, is described in detail, but, as with the above two papers, this paper is
also rather short on details of how the initial objects are obtained from the PDF file.

[Futrelle et al.|2003]] describes a system for graphics recognition from PDF. Here,
the Etymon PJ Tools library [Etymon Systems Inc.[2009 (Web)] is used to obtain the
graphics primitives in object form. Of course, for this application, the extracted infor-
mation is at a much finer granular level than what we require for document analysis.

Today, document analysis of PDF files is still an ongoing research topic, and two
research groups are particularly active in this field. The group led by Rolf Ingold in
Fribourg, Switzerland, continues to publish methods to convert PDF documents into
a structured XML format and represent them in such a way that virtually no infor-
mation from the original file is lost [Bloechle et al.||2009; Rigamonti et al.2005]. The
group headed by David Brailsford in Nottingham is working on restructuring PDF
tiles using component object graphics (COGs) to improve repurposability [Bagley et al.
2003]. In a similar way to the methods described in Section their COG Extractor

IThe paper analyses the results of several PDF extraction libraries (but not PDFBo, the library which
we use here, as it was then at a very early stage of development), but does not state which library is used.

21

Chapter 2. Document analysis and understanding

[Bagley 2006] parses the PDF content stream directly and groups the instructions to
represent logical objects.

2.2.6 Document analysis as a computer vision task

All the methods described in this chapter up to now can be said to have taken a
relatively ad hoc approach to document analysis, segmenting the page predominantly
using fragments of knowledge, or rules. For example, the bottom-up approaches clus-
ter blocks together using only low-level knowledge, i.e. the smallest pixel distance
between the two blocks, to decide whether the blocks belong to the same segment.
Top-down approaches use higher-level knowledge, such as rivers or whitespace of
a minimum width, but ignore information at the lower levels. Because document
layout generally follows rigid rules, which are in many cases known a priori, such
approaches are able to produce satisfactory results on a wide range of documents.

However, if we consider the ultimate goal of document analysis research to be a
segmentation algorithm that works successfully on all documents, these approaches
are inherently limited, as they do not model the human vision process accurately
enough. When a human reader analyses a document, several processes operate con-
currently at multiple levels of granularity to allow him to understand the document
more accurately. This is particularly important for more complex layouts or cases
where layout conventions have been violated (such as poorly or non-professionally
typeset documents), which cause considerable problems for current document un-
derstanding systems but remain understandable to humans. Already in 1992, Schiir-
mann et al. wrote on the necessity of analysing multiple granular levels:

It should be made clear from the beginning, however, that document
analysis is only in simple cases suited for pure straightforward sequen-
tial operation. The document analysis task must be structured into sev-
eral levels of interpretation and requires a combination of bottom-up and
top-down approaches. At the lower levels ambiguities are quite frequent
which can be resolved only at higher levels. ([Schiirmann et al.[1992], p. 1
[1101])

In the computer vision domain, the problem of image segmentation is often defined as
finding a solution that is in some way optimal in respect to several models at different
levels of granularity, which conflict and complement each other. For example, Tu and
Zhu state that:

The objective of image segmentation is to parse an image into its con-
stituent components. The latter are various stochastic processes, such

22

2.2. Related work

as attributed points, lines, curves, textures, lighting variations, and de-
formable objects. Thus, a segmentation algorithm must incorporate many
families of image models and its performance is upper bounded by the
accuracy of its image models ...

... Real world images are fundamentally ambiguous and our percep-
tion of an image changes over time. Furthermore, an image often demon-
strates details at multiple scales. Thus, the more one looks at an image,
the more one sees. ([Tu and Zhu/2002], p. 1 [657])

Perhaps because of their relatively high implementational and computational com-
plexity, such approaches have been slow to find their way into document analysis
systems. [Ishitani[1999] describes one such approach, which uses a framework based
on emergent computation, which supports flexible low-level interactions between four
subsystems or agents, which cooperate with and compete against each other. Through
these interactions, higher-level knowledge emerges.

When a human views a document from a distance, he can usually understand its
overall structure using spatial and textural cues, even if the text is too small to read.
This notion is used in [Randen and Husey|1994; Jain and Zhong|1996], which describe
texture-based approaches to segment page images.

The problem of combining knowledge on several granular levels was also ad-
dressed in the table structure recognition algorithm presented in Wang’s doctoral the-
sis [Wang|2002], which uses a probabilistic model at several levels of granularity to
obtain high detection rates.

2.2.7 Commercial software

A number of commercial off-the-shelf packages make use of some of the techniques
described here. Apart from OCR software, this includes conversion programs that
take a PDF as input and convert it into another, more structured format. Generally,
we found that the approaches taken in such programs only perform a very limited
understanding of the document, and typically use the layout features of the target
format to compensate for the limitations of the document understanding process. The
following products were investigated in detail:

o Archilogue PDF to HTML Converter [Archilogue[2006 (Web)||: This converter aims
to preserve the original layout of the PDF. The only document understanding
steps which are performed are line finding and reading order detection. These
lines are then placed with transformed absolute coordinates (using <div> tags)
on the resulting HTML page. To reduce the likelihood of overlapping text due to

23

Chapter 2. Document analysis and understanding

font changes, the relative font size is reduced. Graphical elements are rasterized
and displayed as a background image. Due to the line finding and reading order
detection, it is possible to select text in most converted documents. However,
the resulting HTML is not repurposable.

e ABBYY PDF Transformer 3.0 [ABBYY|2006 (Web)]: We tested the PDF-to-Word
conversion feature of this software. Generally, the resulting documents visually
represented the originals and it was possible to select text and make minor ed-
its. Tables were detected if ruling lines were present; otherwise, text aligned in
columns was represented using the columns feature of Word.

With both converters, their layout-preserving nature was used to overcome the limita-
tions of the document understanding process, and it was possible to make minor edits
in the resulting documents. In such a situation, the user can be said to “complete” the
document understanding process by using his own knowledge when making such
edits. However, the logical structure of the documents was not fully rediscovered so
that the documents could be repurposed or used for machine processing applications,
such as data extraction.

2.3 Summary of our conclusions and approach

Based on an analysis of the previous work covered in this chapter, we have imple-
mented PDF Analyser, a system for document analysis of PDF files, which is described
in more detail in Chapter 3| As PDF Analyser uses solely document generic knowl-
edge at several granular levels to process an arbitrary PDF document, we concentrate
mostly on the document’s physical structure, rather than the textual content. This
processing task can be split up into two phases: extraction and segmentation.

The extraction phase works directly on the PDF content stream to obtain the page
content as a set of objects using an extraction procedure based upon the PDFBox li-
brary. In addition to obtaining text from the PDF content stream as in [Chao and Fan
2004], we also obtain graphic objects directly from this stream, instead of using an in-
termediate bitmap representation. As graphic objects can be very complex in PDF, we
employ additional heuristics to discard illustrations and retain only lines and boxes
that are likely to be useful for document understanding. Section [3.3| describes these
methods in detail.

Our methods for page segmentation are described in Section The ordered-
edge segmentation algorithm was developed to overcome the main limitation of bottom-
up approaches without increasing complexity or execution time significantly. The

24

2.3. Summary of our conclusions and approach

edges between neighbouring blocks are ordered in such a way that more ambiguous
edges are visited later on in the process, after most of the edges have already been
visited and significant higher-level information about the document’s structure is also
available for the decision making process.

Furthermore, our method of wrapping using graph matching was also inspired
by our interactions with the PDF converters that we analysed, where layout preser-
vation was used to compensate for the inaccuracies in document understanding. Our
interactive wrapping approach, which is described in Chapter |6} is also based on the
principle that the user, by interacting with a structure based on the visual appearance
of the page, indirectly provides information to complete the document understanding
process.

25

Chapter 3

A system for document analysis of
PDF files

This chapter describes the development of a prototype system, PDF Analyser, to per-
form document analysis of PDF files. The system loads a given page of a PDF file, ex-
tracts the text and graphics objects, performs bottom-up segmentation on the text and
simplifies the graphical data so that only the most important graphical objects which
have a structural function (and are therefore necessary for document understanding)
are represented. The results are displayed in graphical form to the user. Much of the
content of this chapter can also be found in the author’s publication [Hassan/2009al.
The system uses solely document-generic knowledge and is designed to work on an
any PDF document which has been digitally generated from a computer application.

Section 3.1] describes the model that is used to internally represent the contents
of the PDF. This is a simplification of the original PDF structure. Section [3.2| presents
the user interface of the system. Section [3.3|describes how the low-level instructions
in the PDF are processed to populate the model with the data on the page. Section
B.4)presents the ordered-edge segmentation algorithm, a bottom-up algorithm to segment
the textual content into logical blocks. Finally, Section 3.5/ presents an experimental
evaluation of the system.

3.1 Internal representation model

In order to perform analysis of PDF documents and facilitate further processing, a
model was devised to store all the physical items in the document. This model is
based on rectangular objects, or segments, which may be hierarchically nested. Sub-

27

Chapter 3. A system for document analysis of PDF files

sequent chapters of this thesis also refer to the object types in this model. In Sec-
tion we stated that we are dealing predominantly with Manhattan or near-
Manhattan layouts. Thus the limitation of rectangular boundaries for segments al-
lows our model to be relatively simple, yet offers enough granularity to represent the
document successfully for data extraction purposes.

This section describes this model and an algorithm to generate an adjacency graph
from a set of blocks, which enables efficient access to a node’s direct neighbours and
is used at several processing stages.

3.1.1 Coordinate system

All segments are represented by their rectangular bounding box coordinates on a 2-D
Cartesian plane. We use the same coordinate system as in PDF. The origin (0,0) is at
the bottom left of the “canvas” and one unit is equal to - inc Depending on how
the PDF has been created, objects may also have negative coordinates, particularly if
they occur outside of the printed area of the page. Section describes page areas
in more detail. When the results of our analysis are viewed onscreen, the units are
translated into screen coordinates, which have their origin at the top-left of the screen.

3.1.2 Segment types

We define the following types of segment, which can occur on the page:

e Basic segments are defined simply by their bounding box coordinates
(x1,x2,Y1,Y2), of which there are three subtypes:

- line segments represent straight lines drawn on the page either horizon-
tally or vertically;

- rectangle segments represent rectangles drawn on the page; and

- image segments represent bitmap images.

e Text fragments contain in addition to their bounding box coordinates a text
string, font object and font size.

I This definition is also used in PostScript. PostScript and PDF units are often referred to as points,
which are common units in the printing industry. However, this unit has varied considerably in the past
and, as stated in the Adobe PDF Reference, there is no universal definition of a point.

28

3.1. Internal representation model

e Clusters are composite text segments, which are built up of a collection of text
fragments and/or clusters. The attributes text string, font and font size also ap-
ply; they relate to the combined text of all subelements and most commonly
occurring font and font size respectively. The term text segments is used to
refer to both clusters and text fragments.

A page is a collection of any of the above segments and also contains a bounding
box definition corresponding to the page size, which is obtained from the PDF (see
Section3.3.1). A document is an ordered list of pages.

The use of hierarchically nested segments allows us to represent objects at various
levels of granularity, and manipulate objects in intermediate processing steps in a
consistent way. Some of these objects are shown in Figure This terminology will
be used throughout the dissertation.

3.1.3 Adjacency graph representation

During processing, we need to put the segments into a suitable data structure which
allows fast access to each segment’s neighbours. To this end, we have devised the
adjacency graph representation, in which each segment is represented as a node and
each neighbourhood with one of four attributed edges corresponding to its direction:
northOf, southOf, eastOf or westOf. For each segment, we look for its first direct
neighbour regardless of distance.

The algorithm for generating the graph, which takes a list of segments as input, is
described in Algorithm [1}

Algorithm 1 Adjacency graph generation from a list L of segments

1. create two lists, H and V, which contain all segments in L sorted in horizontal
and vertical order of midpoint coordinate respectively.

2. foreach segment s in L:

(a) locate index of s in H and V. Starting from these positions, examine both
lists in ascending and descending order. This corresponds to looking for
the next neighbouring block in each of the four directions of the compass.

(b) as soon as a segment t is reached whose midpoint y coordinate (if looking
horizontally) or midpoint x coordinate (if looking vertically) intersects that
of s and vice versa, store t as neighbour of s in that particular direction. Do
not look further in this direction.

29

Chapter 3. A system for document analysis of PDF files

Because the relations westOf and northOf are opposites of the relations eastOf
and southOf, we could only store relationships in these two directions. However,
because we require fast access to neighbours in all directions, we do not do this. For
consistency, we ensure that every relation is also expressed by its opposite. For one-to-
one relationships, these are automatically found by the algorithm. For many-to-one
relationships, as shown in Figure[3.2} only one rightOf relation is found for the image,
although it has several neighbours to its right. However, as each line of text has the
image as its leftOf relation, the missing opposite relations are automatically added in
a postprocessing step.

Figure [3.2) shows an example of the adjacency graph at the initial text fragment
level after preprocessing, which is used as input to the ordered-edge segmentation al-
gorithm. Figure 3.3|shows the adjacency graph at the block level to join neighbouring
blocks after segmentation.

The adjacency graph is designed only to represent a two-dimensional page struc-
ture, i.e. a snapshot of a stage of processing at a given level of granularity, and is, in
most cases, planar. For nested objects, we choose a particular level of granularity for
the graph. In the worst case, for n segments, the graph generation algorithm requires
2n(n — 1) iterations, i.e. it is O(n?). However, the complexity is significantly reduced
in practice, as the search in a given direction stops as soon as a neighbour is found.

Whereas the algorithm performed adequately for most documents that we en-
countered, we found execution time to be too high when run on complex documents
such as newspapers at the initial text fragment level of granularity. Therefore, the
initial preprocessing stages, as described in Section [3.4.1} have been introduced to re-
duce the number of segments to an acceptable level. Performance figures are given in

Table

This graph representation is also used as a basis for our graph-based approach to
wrapping. See Section [6for more details.

3.2 Visualization

We have developed a GUI to visualize the results of our processing algorithms. After
selection of the desired filename, page number and segmentation mode or final process-
ing stage, the PDF file is opened and processed accordingly.

Using methods from the XMIllum Java framework [Rigamonti et al.2003; Univ.
Fribourg|2002 (Web)], the rectangular objects are displayed in layers and overlaid on
top of a bitmap rendition of the page. We refer to this as the page view. The individual
layers correspond to the different segment classes as defined in this chapter and can

30

3.2. Visualization

UPDATE

In other news Daring to create
m In former Soviet states, leaders
watch uneasily as the call for Mayor Bertrand Delanoé& has
democracy widens. Page 3 worked hard to make his city a con-
temporary masterpiece. “Paris is a
m Rebellion at La Scala ends as museum, and
Riccardo Muti resigns as musical that is a priv-

i director after 19 years. Page 8 ilege,” he says.
“But if it wants
® A UN envoy says Syria has vowed to be loyal to its

to pull out all military and history, it needs
intelligence units from Lebanonby to innovate, to
the end of April. Page 9 dare — it needs

to move into
® Traqilawmakers elect a Sunni Arab the 21st centu-
as speaker of Parliament. Page 9/ ry.” Page2

On the Web: www.iht.com

Figure 3.1: Screenshot of the GUI (see Section showing some of these objects on
the page. Line segments are marked in purple, image segments in blue. Clusters are
shown in a cyan outline and their constituent text fragments are shaded in yellow

FLITS T

1960

ght to 2012 Olympics =

loose

 after mtematlonal fight to fmlsh b

i
By Lynn Zinser | T publi
- ! ! dustr
SINGAPORE: In ‘a surprising upset —they
‘over Paris, London snatched away the —comg
2012 Olympics on Wednesday, capping —optic
‘a comeback in a bidding race it seemed Sh.
nearly out of only a year ago. ers sl
The selection ends one of the most — strive
fiercely contested competitions for the —plier:
‘Olympics since the advent 0[the mod-
ern Games in 1896, | Moul
Sebastian "Coe, "the British “former
‘Olympian and member of Parliament,
re-energized London’s "‘chances when
he took over and led a hard-charging
‘campaign to brmg the ‘Games back to

L I B e Lailad hida e

Figure 3.2: Example of a many-to-one adjacency relationship between the image and
lines of text. Please note that the blue blocks represent the clusters at the initial stage of
the segmentation process, before they have been merged together into larger blocks

31

Chapter 3. A system for document analysis of PDF files

. PDF Analyser - AUT_DS.pdf M=E?
Open Document Segmentation Mode Some changes necessitate Layers
- . reloading of document! s
)) Indiv. chars) Monospace = Page Image
View Graph Page: l
) Initial lines) Text fragments o = Clusters
Test Wrapper) Iterations: o
() Merged lines () Structures P Crmae g Edges
Print Result ® Blocks) Refined — li;es Lines of text
Save Wrapper) Columns) Tables — : Found instances =
} Volle Auftragsbiicher fiir Aretha Zeugen Jehovas vor Anerkennung
% 0 i Beilage New York Times . i i i Repartage Seite 6
M@J; ranklins Hutmacher als 14. Kirche in Osterreich
ML TAG. 30, M 2000 U‘-’I]-RREL"H-“ l"J\B][\"l"lT\f‘“'l‘]ll' £ H"-'\‘.""f\-('l].‘ii‘i\‘-' DecAR BRONMER | €1 :-\
Breite Front gegen
Industrievorstol} -
e e
fir Nulllohnrunde
Wirtschaftsminister: ,,Falsches Signal® |
ht fiir Binnennachfrage
‘ v
Team-Eigner Ross Brawn erwehrt
B = m f B
Vorstoli fir EU-Wahlpflicht™ s Sanchone i B
Melbourne lenkten. Fulu: EPA
Keine Zustimmung der Parteien fir Veanitzky-Vorschlag Seite.14, Kopl des.Tages. Seite. 22
Wien - Altbundoskanzlor Frans
e D
rin Feklers Konzept
Seite 8, Kommentar Seite 22 |
Applaus fiir neue Afghanistan-Strategie der USA
Rarzai: ,Darauf hat das Volk gehollt - Einsatz zentrales Thema beim Nato-Gipfel H
Causa Zilk In den

Figure 3.3: A further example of PDF Analyser’s page view, based on methods in the
XMIllum library, showing the results of our segmentation algorithm overlaid on a
bitmap rendition of the page. Adjacency edges between clusters are also shown here

32

3.3. Obtaining data from PDF

be shown or hidden by the user at will. The view can be zoomed in and out, and
scrolled. The bitmap rendition is generated by Ghostscript, and is also represented as
a layer, which can be shown or hidden at will.

The GUI also provides further options to fine-tune the processing steps for debug-
ging purposes. For example, ruling object processing can be disabled and the system
can be set to stop after a predefined number of iterations to display the result partway
during processing.

PDF Analyser also interfaces with the TouchGraph library [TouchGraph LLC|2006
(Web)] to display the document’s adjacency graph in a flexible, navigable form and
allow the interactive generation of wrappers for the graph-based approach. Please
refer to Section[6.4.1|for a detailed description of the graph view of PDF Analyser.

It is also possible to show edges between adjacent segments in the page view,
although, due to clutter, they are not always clearly visible here. The examples in
Figures[3.2)and 3.3/ have the edges shown. The graph view’s flexible arrangement of
nodes overcomes this problem, and enables the precise graph structure to be studied
in detail. Many further screenshots from the GUI are provided throughout this thesis.

3.3 Obtaining data from PDF

In this section, we describe how we open a PDF document, parse the contents of the
PDF file and populate our data structures defined in Section 3.1 with object data ob-
tained directly from the page’s content stream. At this stage, we also perform some
initial processing of the PDF data to reduce the initial number of objects for perfor-
mance reasons.

The PDF specification [Adobe Systems Inc.[2009 (Web)] is published by Adobe
and can be downloaded freely from their website. There have been a number of
incarnations of the PDF format since its conception in 1993, and the latest specification
represents a published ISO standard. The vast majority of documents encountered on
the Web are published in earlier versions of the format (1.4 or earlier), and we have
therefore concentrated on implementing features available in these versions.

3.3.1 Page objects
Each PDF file contains a page tree which contains the individual page objects which
contain the page’s data in a content stream, a sequential list of instructions in the form

of operator and operand pairs. These instructions are based on the operators in the

33

Chapter 3. A system for document analysis of PDF files

PostScript printing language. It is these instructions that we process in order to obtain
the text and graphic objects that are drawn on the page.

The page object also includes other important data such as a thumbnail image
of the page and the page’s dimensions. The latter is of particular importance to us,
as it enables us to scale the objects correctly so that the entire page is displayed on
the screen and aligns correctly with its bitmap rendition (generated separately by
Ghostscript) when it is overlaid in the GUL

The PDF specification actually allows up to 5 different page sizes or bounding
boxes for each physical page to be defined: MediaBox, CropBox, BleedBox, TrimBox
and ArtBox. These parameters enable crop marks and other markings to be drawn
outside of the final cropped area of the page. They also enable a different page size to
be specified for screen and printer. The MediaBox is the largest of these boxes and its
definition should always be present in the PDF file. All objects, whether visible or not
in the final printed output, should fall within the bounds of the MediaBox. The other
dimension of interest is the CropBox, which defines the final page area in viewing
applications such as Adobe Acrobat and Reader.

We did once come across a document which did not include a MediaBox defi-
nition, and therefore presumably did not conform to the PDF specification. As this
document did include an ArtBox, it displayed without error in viewing applications
such as Adobe Acrobat and Ghostscript. Our algorithm therefore looks for a suit-
able alternative bounding box (starting with the next largest), should the MediaBox
definition be missing.

Many PDF documents did not include a CropBox definition; in this case, the spec-
ification states that the MediaBox is to be used as the final page area. We found
Ghostscript to be somewhat inconsistent when choosing an appropriate bounding
box when rendering the page, particularly if other bounding boxes were defined.
The problem was solved by using the ~dUseCropBox command line parameter, which
forces the correct bounding box to be used.

A page may also be rotated by 90 or 270 degrees clockwise or anticlockwise (clock-
wise rotations are negative amounts). Certain versions of the Ghostscript executable
rotate the page automatically by default, whereas other versions require this to be
specified by a command-line parameter.

The Java library PDFBox is used to process the data held in the PDF file and arrive
at the content stream of each page. This is described in more detail in the following
section.

34

3.3. Obtaining data from PDF

Operators

Implemented by us B, BI,c, CS, cs, Do, f, F, f*, h, K, Kk,
1, m, n, q, Q, re, RG, rg, s, S, Tj,
TJ, v, w, W, W*, vy

Already implemented in PDFBox | BT, cm, d, ET, gs, T*, Tc, Td, TD, Tf,
TL, Tm, Tr, Ts, Tw, Tz, \’, \"

Not implemented b, b*, B*, BDC, BMC, BX, do, di, DP,
El, EMC, EX, G, g, i, ID, j, J, M, MP,
ri, SC, sc, SCN, scn, sh

Table 3.1: A list of operators which are implemented in our system

3.3.2 Processing the page contents

By extending PDFBox’s OperatorProcessor class, it is possible to define which ac-
tions are taken when a particular PDF instruction is encountered. As our goal was to
obtain enough information to perform document understanding and text extraction,
we did not need to create methods for all possible operators in the PDF specifica-
tion. The operators that we implemented are shown in Table In particular, we
extract all text and bitmap image blocks, but only certain vector items likely to help
us understand the page better, such as ruling lines and rectangles, and not logos or
illustrations.

3.3.2.1 Text and graphics state

PDF has two coordinate systems: global and local. The local coordinate system can
be changed by altering the transformation matrix with the cm (concatenate) operator.
This way, parts of PDF code can simply be reused at different sizes and positions
of the page without needing to be rewritten. In this way, external artwork such as
advertisements or diagrams can easily be placed in a PDF. Fortunately for us, the
existing PDFBox methods take care of all the translation operators.

3.3.2.2 Text elements

The PDF specification defines two operators for positioning text on the page: Tj (show
text), which takes a string as its operand, and TJ (show text glyph), which takes an ar-
ray of strings and numbers as its operand. Whereas the former simply places text on
the page, allocating to each character its normal width as defined in the font, the latter
operator allows the individual spacing between glyphs to be adjusted. As most desk-
top publishing packages use their own kerning algorithms, we found the TJ operator
to occur more frequently.

35

Chapter 3. A system for document analysis of PDF files

By default, the methods in the PDFBox source code split each TJ instruction into
its subinstructions and place each individually positioned block separately on the
page. This results in initial text blocks of usually no more than 2-3 characters in
length. We first tried to merge all text blocks together that were created from the
same TJ instruction. In some documents, such the example in Figure this gave
us complete lines of text, whereas in other documents it made little or no difference
to the result. Unfortunately, we also found that many tables were generated by using
a single TJ instruction for a complete row, and that operands designed for kerning
adjustments were used to jump from one column to the next (see Figure 3.5/ for an
example). It is worth noting that this only occurred in certain tables and never with
columns of text.

As we did not wish to risk overmerging the blocks, we decided to keep our ini-
tial text fragments to the granularity of subinstructions of the TJ operator as well as
individual Tj instructions. These fragments are then used as input to our segmenta-
tion algorithm as described in Section Note that, in some cases, we found that it
was not possible to completely avoid overmerging text fragments at this stage and we
therefore need to split them later, as shown in the example in Fig. This problem
is described in Section[3.4.1]

Special cases The vast majority of documents did not represent spaces using space
characters, but used kerning instructions to provide the appropriate gap between
words. If space characters were included between words, this did not make any
difference to the final result. However, in some documents containing monospaced
(ASCII) text, we found that space characters were also included before and after the
horizontal start and end positions of blocks of text. In fact, the entire width of the
page’s print area was represented as one Tj instruction, and spaces were used to po-
sition text horizontally, as on a typewriter. This was clearly a sign that the PDF was
created by a legacy terminal application upgraded to output PDF files.

Unfortunately, such an input results in text segments with inaccurate x coordi-
nates and tabular data being merged across the entire width of the page, as shown in
Figure In order to overcome this problem, we have developed a monospace mode:
each text fragment is first split into its individual characters. Then, the individual
characters are merged using the initial merging procedure with a higher threshold
than normal. The result is shown in Figure

Finally, it is worth noting that characters (or complete strings) are sometimes over-
printed with a slight offset to simulate boldface type. As long as these instructions
follow another, they are automatically detected and represented by a single text frag-
ment with the boldface flag set to true.

36

3.3. Obtaining data from PDF

er etwas ist_oder sein mdchte

bei Daimler-Benz, der achtet
aufi die Kleiderordnung; man trigt
Blau im' Schwabenkonzern, hell am
FlieBband, dunkel aufl der Fiihrungs-
ebene. Und wer den Entscheidungstri-
gern im Vorstand ganz nahe ist, der
darf sich OFK-Milglied nennen, der
gehort zum oberen Fiihrungskreis des
Hauses.

Ende Januar zogen rund 1000 der
1400 OFK-Milglieder in die Stuttgar-
ter! Liederhalle ein., viele dunkelblan
gewandet und alle gespannt wie Chor-
knaben vor einem grofen Aufitritt.
Jiirgen Schrempp (53), der Chef,
hattel gerufen, und er verlangte Man-
nesmut: ,Dies ist unsere gemeinsame
Veranstaltung. Nutzen Sielsie!| Fordern
Sie uns! Grillen Sie uns!*

Fiin Spannung bei dem Treffen am
27 Januar war gesorgt: Nie zuvor la~

er etwas ist oder sein mochte

bei Daimler-Benz, der achtet
auf die Kleiderordnung; man triigt
Blau_im Schwabenkonzern, hell am
FlieBband, dunkel auf der Fiithrungs-
ebene. Und wer den Entscheidungstri-
gern im Vorstand ganz nahe ist, der
darf sich OFK-Milglied nennen, der
gehort zum oberen Filhrungskreis des
Hauses.

Ende Januar zogen rund 1000 der
1400 OFK-Mitglieder in die Stuttgar-
ter Liederhalle ein, viele dunkelblau
gewandet und alle gespannt wie Chor-
knaben vor einem groffen Auftritt.
Jiirgen Schrempp (53), der Chef,
hatte gerufen, und er verlangte Man-
nesmut: ,,Dies ist unsere gemeinsame
Veranstaltung. Nutzen Sie sie! Fordern
Sie uns! Grillen Sie uns!*

Fiir Spannung bei dem Treffen am
27. Januar war gesorgt: Nie zuvor la-

(a)

(b)

er etwas ist oder sein méchte

bei Daimler-Benz, der achtet
auf’ die ' Kleiderordnung; man trigt
Blau /im Schwabenkonzern, ' hell am
Fliefband, dunkel auf der Fiihrungs-
ebene. Und wer den Entscheidungstri-
gern im Vorstand 'ganz nahe ist, der
darf |sich OFK-Mitglied nennen, der
gehirt zum oberen Fiithrungskreis des
Hauses.

Ende Januar zogen rund 1000 der
1400 OFK-Mitglieder in die Stuttgar-
ter | Liederhalle ein, viele 'dunkelblau
gewandet und alle gespannt wie Chor-
knaben vor| einem | groflen Auftritt.
Jiirgen Schrempp (53), der Chef,
hatte gerufen, und er verlangte Man-
nesmut: ,.Dies ist unsere gemeinsame
Veranstaltung. Nutzen Sie sie! Fordern
Sie uns! Grillen Sie uns!*

Fiir Spannung bei dem Treffen am
27. Januar war gesorgt: Nie zuvor la-

er etwas ist oder sein mdchte

bei Daimler-Benz, der achtet
auf die Kleiderordnung; man trigt
Blau im |Schwabenkonzern, ' hell am
FlieBband, dunkel auf der Fiihrungs-
ebene. Und wer den Entscheidungstrii-
gern im Vorstand ganz nahe ist, der
darf sich OFK-Mitglied nennen, der
aehort zum oberen Fihrungskreis des
Hauses.

Ende Januar zogen rund 1000 der
1400 OFK-Mitglieder in die Stuttgar-
ter Liederhalle ein, viele dunkelblau
gewandet und alle gespannt wie Chor-
knaben | vor einem grofen Auftritl.
Jiirgen Schrempp (53), der Chef,
hatte gerufen, und er verlangte Man-
nesmut: ,.Dies ist unsere gemeinsame
Veranstaltung. Nutzen Sie sie! Fordern
Sie uns! Grillen Sie uns!*

Fiir Spannung bei dem Treffen am
27. Januar war gesorgt: Nie zuvor la-

(©

(d)

Figure 3.4: Figure (a) shows how the text fragments are represented in each individual
subinstruction in the PDEF. Figure (b) shows how merging across entire TJ instructions
can result in complete lines of text being formed (except where font changes occur).
However, as shown in Fig. this method can also lead to overmerging. Figure
(c) shows the result when the subinstruction blocks in (a) are merged using the first
initial merging procedure to join blocks serially written to the PDF file as described
in Section Figure (d) shows the result of the second initial merging procedure,
which joins closely neighbouring segments together, as applied to the blocks in (c).
This is the the result that is used as input to the ordered-edge clustering algorithm

37

Chapter 3. A system for document analysis of PDF files

Matrox product selection table Matrox product selection table

Ario LE Axia D Akio SO RTX2 AviotE Ao D Axe SD RIx2
Cagpturefediting formats Qapture/editing formats

u
2
i
X
%
i
A

9

£0-100mkpd

Figure 3.5: The example on the left shows how merging across TJ instructions can
result in overmerging of segments, as kerning operators are used to jump across the
individual table columns. Using subinstructions (right), this problem is avoided

6872134/04 1 *
TC716M TE-MIN: 30 KOST:4135
FEHLER : 1¥ Passt nicht
L AVS TID: 1903817112
| Falscher Barcodeaufkleber 619137134 vorhanden
TE: 30
FEHLERDATUM 0 19.11.2005
ENTSCHEIDUNG : Riicklieferung oder Gefahrgut

Figure 3.6: Entire lines of monospaced text written to the PDF in a single instruction

6872134 /04 LU LI FEDERBEIN-STOSSDAEMPFER VO l *
TC716M TE-MIN: 30 KOST:4135
FEHLER H 1X - Passt nicht

AVS ID: 15903817112
Falscher Barcodeaufkleber 619137134 vorhanden
TE: 30

FEHLERDATUM : 19.11.2005

ENTSCHEIDUNG = Riicklieferung oder Gefahrgut

Figure 3.7: The monospace mode, which splits these lines at areas of significant
whitespace

38

3.3. Obtaining data from PDF

3.3.2.3 Graphic elements

Bitmap images Bitmap images are relatively straightforward to extract. An image
is placed on the page either using the Do (invoke) instruction or as an inline image
using the BI (begin inline image), ID (image data) and EI (end inline image) instructions,
together with its rectangular coordinates before scaling and transformation. The only
main pitfall is that of clipping paths: we found it very common that the actual images
would occupy a larger area than what was visible on the page, and that these extra
parts of the image were clipped to their final size using a rectangular clipping path
(see Section [3.3.2.3). We imagine that this is the result of the cropping functionality
in common desktop publishing systems, which simply send the data to the printer in
the most straightforward manner.

Vector elements Vector elements are a greater challenge for us, as we need to dif-
ferentiate between objects which are parts of vector images (such as illustrations and
diagrams) and objects which play a dominant role in conveying the logical structure
of the page to the reader, such as ruling lines and boxes. It is worth noting that, in the
latter, curved segments are rarely used.

In PDF, vector graphics are drawn by defining a path which comprises one or more
connected subpaths. A new subpath is begun by the m (moveto) operator. Straight line
segments are drawn by the 1 (lineto) operator; curves by the ¢ (curve to), v (curve to
replicate initial point) and y (curve to replicate final point) operators; and rectangles by
the re (append rectangle to path) operator. The operator h (close) closes the subpath with
a straight line back to the starting coordinate. A rectangle is equivalent to drawing
three line segments and closing the subpath.

As our simplified model only includes line and rectangle objects, we approximate
Bézier curves with straight lines through their coordinate parameters. (In fact, we
discard all paths which include curves; we only need to store them at this stage in case
they are later used to define a clipping boundary). Subpaths which include curves are
flagged as such. We store all generated subpaths until they are either stroked by the
S (stroke path) or s (close and stroke path) operator, filled by the £ (fill non-zero rule) or
£* (fill even-odd rule) operators or the path is ended. The n (end path) operator clears
the path without stroking or filling; it is generally only used to clear the path after a
clipping path has been defined (see “Clipping paths” below).

When we come across a stroking or filling operator, we first check that the current
colour’s grey value lies below a certain threshold. If so, we represent each subpath
which contains only vertical and horizontal lines and/ or rectangles with its respective
objects in our simplified model. If a clipping area is active, we first clip the objects.

39

Chapter 3. A system for document analysis of PDF files

If the width or height is above a minimum threshold (defined as 3 x modal font size
of all text blocks on the page) and if, according to our heuristic, no other smaller or
curved graphic objects are nearby, these objects are then stored in our representation.

We find that the above treatment of PDF vector graphic instructions enables us to
obtain a simplified representation of the most important lines and boxes which are of
material importance for layout analysis, i.e. they are likely to be noticed immediately
by a human reader just scanning through the page and are at the level of granularity
we require for performing document analysis.

Rectangles and lines In many cases, we found that ruling lines on pages were actu-
ally drawn as filled rectangles. Conversely, in some rare cases, rectangular-looking
objects were actually drawn as very thickly stroked lines. After object extraction, we
examine the dimensions of each rectangle and line and, if the shorter dimension is
below or above a given threshold based on modal font size (usually about 5 pt), the
object is reclassified if necessary.

Clipping paths The PDF specification allows the use of any arbitrary path as a clip-
ping path, which can be set using the W (modify clipping path non-zero) and W* (modify
clipping path even-odd) operators. Thus it is possible to create interesting graphic ef-
fects or clip images in a non-rectangular fashion. As we are not aiming to precisely
recreate the appearance of the PDF, these operators are not of particular interest to us.
Even the current version of PDFBox does not yet provide support for this operator in
its page rasterization methods. However, as mentioned above, we have found that
clipping paths are often also used to rectangularly crop images and, in some cases,
also ruling lines. We therefore approximate the result by storing the bounding box of
the clipping path and clipping all objects to this rectangular area when they occur. We
find that this gives satisfactory results for our purposes, as shown in Figure

3.4 Page segmentation

In most document processing tasks, the first step is to decompose the page into its
constituent segments, which somehow represent logical units of the document. As
a page can be represented on several granular levels, these segments can later be
merged together or further decomposed, depending upon the algorithm used.

Section summarized existing approaches to document analysis and under-
standing, with particular emphasis on page segmentation. This section presents the
ordered-edge segmentation algorithm, an efficient, robust, bottom-up page segmentation

40

3.4. Page segmentation

DAIMLER-BENZ

Das Windsor-Syndrom

DAIMLER-BENZ

Das Windsor-Syndrom

LFordern Sic uns! Grillen Sie uns™, appellicric Konzernchef Jirgen
i te. Auf dem Meetin

L Fordern Sie uns! Grillen Sie uns*, appellierte Konzernchef Jiirgen
konterte er auch die Attacken seines VorgAngers Edzard Reuter.

Fiihrungskriftc. Auf dem Mecting
konterte er auch die Attacken seines Vorgiingers Edzand Reuter.

reichsyors
ter, den Folgen der Reorg:

W\:r elwas st oder sein michie Dennoch gab es am Rande des
bei Dail 7, der achiet| G i T

uf die Kleiderondmng

. Asean, Ct s
schiiftsbereichs Liw Luropa immer dasgesante Konzerngeschifl v

bie-
1zt Edzard Reuter (701
moiren {siche Kasten

rempp intern zur

und Dieter Zetsche
vicklung, heute Ver-

kicmlich cgal war, wer untcr ihm den
abgah, verlibi gen ver

ar, wer unier ihm den| Fl
abga

e he g and s sei-l &
und Atega (Verteiler-Lkw) sind im| nes. Vorgingers kann Schrempp. als! i

b
am 27. Mai tabu.

. 27 Mai fabu.

Figure 3.8: Page display without clipping (left) and with clipping (right) of an image

algorithm which overcomes the “knowledge gap” of bottom-up techniques by order-
ing the edges in such a way that more ambiguous edges are visited later on in the
process, when significant higher-level information about the document’s structure is
also available for the decision making process. Experimental results show that the
algorithm produces good results, even on complex layouts such as newsprint. Unlike
most page segmentation methods in the literature, which work on a bitmap rendition
of the page, our algorithm works directly on the objects that are obtained using the

methods in Section [3.3] This algorithm has been published in 2009a].

3.4.1 Preprocessing: Initial merging of horizontally adjacent blocks

We take as input a list of text fragments, which correspond to individual
(sub)instructions for displaying text, may contain anything from one to several char-
acters each, and are clearly oversegmented at this stage (see Figure (@). As a
complex page could contain thousands of these segments, we first aim to reduce this
to a more manageable number to keep processing time of adjacency graph generation
and the later stages of our analysis within reasonable bounds.

41

Chapter 3. A system for document analysis of PDF files

Although the text fragments could be written to the PDF in any arbitrary order,
we have found that the order usually somewhat corresponds to the reading order of
the text, at least at the line level. Because text fragments corresponding to a single
TJ instruction are always returned together, it makes sense to first process this list
linearly (with relatively little processing cost) and join neighbouring segments if they
are on the same line. In this situation, we use a word threshold of 0.25f and a line
threshold of 1.0f, where f refers to the mean font size of both text fragments. For pairs
of blocks above the word threshold but within the line threshold, we merge the blocks
but assume the characters belong to separate words and add a space between them.
The results of this merging procedure are shown in Figure 3.4{(c).

After this initial step, a merging procedure merges horizontally neighbouring
blocks which are not written sequentially to the PDF. We sort the blocks in y-then-x or-
der; this means that blocks with similar baselines (defined as being within a threshold
of 0.15f) are returned together in left-to-right order, and that these individual lines of
text are then sorted from top to bottom. We then join any neighbouring blocks if they
are on the same line and so close together that they could not conceivably belong to
different columns. Therefore we use a very tight threshold of 0.2f.

The reason we allow for a greater threshold in the former case is because we are
only comparing neighbouring items at this stage. As most text is written to the PDF in
its reading order, the chances of overmerging are very low. Furthermore, the thresh-
old of 1.0f is still low enough not to merge across neighbouring columns of text.
Should overmerging occur, for example in tight tabular layouts as shown in the ex-
ample in Fig. a check at every iteration of the segmentation algorithm (see Sec-
tion will take care of up to two overmerged lines in a text block. In the latter
merging process, we are comparing each block with every other, and the likelihood
of overmerging is therefore greater.

The result of both initial merging procedures is an approximately five-fold reduc-
tion in the number of objects on the page (Figure. (d)). With this list of objects
as input, the adjacency graph generation procedure (as described in Section
is executed. This results in a significant performance improvement, as shown by the
timings of the system on four test documents of varying complexity with and without
the preprocessing stage in Table

3.4.2 The “brickwork” effect

One important feature of text layouts is that the words in a paragraph are almost
always laid out in a “brickwork” fashion. For a given pair of adjacent lines, spaces
between words very rarely occur at exactly the same horizontal positions. This is

42

3.4. Page segmentation

Document IHTfrontpage | Canonlenses | StatAustria | ChemlList

Complexity high high medium low

Tabular? no yes yes yes

Without pre- No. nodes 5564 4545 509 232
processing | AG generation (ms) 158133 83159 551 123
(sub- Segmentation (ms) 50883 86217 1320 528
instructions) | Total proc. time (ms) 209706 170244 1936 705
With pre- No. nodes 1034 2218 509 79
processing | AG generation (ms) 4958 20655 538 39
(text Segmentation (ms) 3396 24576 1267 397
fragments) | Total proc. time (ms) 8479 46259 1917 462

Table 3.2: Comparison of performance timings for one page with and without pre-
processing (averages from three runs)

more likely to occur in monospaced documents, which have a limited number of
horizontal positions along a line. Kieninger et al. state that:

In some cases a regular block might show some white space at the
same x-position throughout the complete block. These so called rivers of
whitespace are said to be bad layout and are tried to be avoided by modern
typesetting programs and wordprocessors. They are more likely to occur
in small blocks of only a few lines, using fixed width fonts (e.g. ASCII
texts). ([Kieninger and Dengel|1998a], p. 7 [261])

If this were allowed to happen, these rivers of whitespace in the text would start to
build up and the paragraph would no longer appear as a self-contained element to
the human reader, but rather as individual columns of tabulated data instead. In a
similar way to the T-Recs algorithm described in [Kieninger and Dengel||1998a], the
ordered edge segmentation algorithm also relies heavily on this effect being present
when merging adjacent rows of text. An example is shown in Figure

3.4.3 The ordered-edge segmentation algorithm

After adjacency graph generation (see Section [3.1.3), each of the neighbourhood rela-
tions is represented as an attributed edge with attributes such as fontSize, the average
font size of the two nodes, and length, the closest distance in points between the edges
of both segments (for vertical edges, the distance between the baselines) relative to font
size, as well as vy and vy, the edge’s nodeFrom and nodeTo respectively, i.e. the two
text blocks which the edge connects. Based on these attributes, the edges are sorted
in such a way that the “easiest” edges are considered first.

43

Chapter 3. A system for document analysis of PDF files

9. NC (0)

19 NC ©

6 NC ©

© o

Figure 3.9: Example of tightly arranged column headings, which need to be accounted
for at a later stage of the segmentation process

By Lynn Zinser

SINGAPORE: 1In a surprising upset
over front-running Paris, London
snatched away the 2012 Olympics on
Wednesday, capping a comeback in a
bidding race it seemed nearly out of
only a year ago.

With Sebastian Coe, the former

Olympian, re-energizing the bid when
ha tAanl-if Atrarin AAaar2NNA anA Drimma

Figure 3.10: An example of a paragraph as represented by the text fragments after ini-
tial merging and joined by edges representing adjacency. Here we can see the “brick-
work effect”: note that the entire paragraph could be built by joining just the vertical
edges. The initial merging of successive pairs of blocks has resulted in the line with
tight spacing being merged completely

44

3.4. Page segmentation

Algorithm 2 Edge-sorting function for the ordered-edge segmentation algorithm

1. all vertical edges e = (v, v;) are considered before horizontal edges; for vertical
edges:

e edges where the font size of both segments vf and v; is approximately the
same are considered first; then

- edges where the average font size of both segments is smaller are con-
sidered first; then

* edges with a smaller edge length (line spacing) are considered first;
if it’s approximately the same, then

- edges where the width of both segments is approximately the
same are considered first

2. for horizontal edges:

e edges are sorted by edge length in ascending order

The algorithm first clusters together segments joined by edges where it is obvi-
ous, from just the information in the two segments alone, that they belong to the same
logical block. After most of these blocks have already been formed, the more prob-
lematic edges are then examined, where it is not always possible to determine a priori
whether they should be clustered together or left apart. At this stage, a better decision
can be made, as the higher-level block structure is already partly present. Thus, the
algorithm overcomes the most significant limitation of other bottom-up approaches.

The first stage is to sort the edges into an appropriate order such that the most
likely edges will be visited first. The ordering sequence is given in Algorithm 2|

Note that all edge lengths are always relative to font size, i.e.:

shortest length between the blocks (or baselines for vertical edges)

dge length =
eageieng average font size
As we are working only with text blocks, we ignore any edges which join text blocks
to other objects or other objects to each other.

It is worth noting that vertical edges are deemed the most important in bottom-
up page segmentation. In fact, it is usually sufficient to join only the vertical edges
to obtain all blocks of text. Because of the “brickwork” effect, as described in Sec-
tion[3.4.2) we can build most paragraphs completely just from the vertical edges alone
(see Fig.[3.10). In fact, in the rare case that words in a paragraph do line up vertically,
this already begins to appear as tabulated data to a human reader, and this is why

45

Chapter 3. A system for document analysis of PDF files

we need to exercise great care when joining horizontal edges. Therefore, horizontal
edges are visited only after all vertical edges have been processed. Only at the very
end of processing, any remaining unconnected horizontal neighbours (usually single
lines) are joined together if necessary.

The algorithm is given in Algorithm [3|and refers to an external function cluster-
Together. In practice, the implementation is somewhat more complicated, as hash
maps are used to improve performance.

Algorithm 3 The ordered-edge segmentation algorithm

pre: G = (V, E) is the adjacency graph of the blocks to be segmented
1. let L be a copy of E, sorted according to Algorithm

2. while (L is not empty)

(a) getnextedge e = (v, v;)
(b) if vf and v; not yet in output
1. if clusterTogether(vf, v, €)
e create two new clusters with v; and v; as single subitems respec-
tively and add to output
(c) elseif vf not yet in output
i. clust<—find cluster containing v;
ii. if clusterTogether(vy, clust, e)
e add vy to clust.items
(d) else if v¢ not yet in output
i. clust<—find cluster containing v;
ii. if clusterTogether(v;, clust,e)
e add v; to clust.items
(e) else (both nodes already in output)
i. clustl«find cluster containing v¢
ii. clust2«find cluster containing v;
iii. if clust1 # clust2 A clusterTogether(clust1, clust2,¢)
e merge clust1 with clust2

The function clusterTogether uses a number of heuristics to decide whether two
given clusters belong to each other. For vertical edges, this method returns true if:

46

3.4. Page segmentation

e the new item(s) to be added are consistent with the line spacing of the existing
cluster; and

e the font sizes are approximately the sameﬂ

For horizontal edges, the nearest vertical neighbour of both nodeFrom and nodeTo
is found. If nodeFrom and nodeTo have different nearest vertical neighbours, the
closest (in terms of y-axis distance) is chosen. Based on this distance and the number
of lines of text that each text block contains, a heuristic is used to compute a maximum

width threshold.

This threshold is normally 0.75f, but can be increased in the following cases:

e As blocks containing fewer lines of text are most likely to have been not fully
clustered by the algorithm, the heuristic allows for an increased edge width
threshold in such cases.

e Similarly, we have noticed that headings and other freestanding items of text
often exhibit a wider character and word spacing. As long as they are not im-
mediately surrounded by other text, it is clear to the reader that they still form
a complete line of text. Therefore, the edge width threshold is also increased
where the nearest vertical neighbour distance is large.

clusterTogether then returns true if:

e the new item(s) to be added are consistent with the font size of the existing
cluster; and

e the edge width (i.e. the horizontal distance with respect to font size) does not
exceed the above computed threshold.

Additionally, for each creation or modification of a cluster, a further check is carried
out on the new cluster; if this check fails, merging of the edges is aborted. We have
found that, in certain very tight tabular layouts, the column headings may be written
so closely together that they appear a priori to be a single, contiguous line of text. In
fact, the spacing between headings of adjacent columns can, in special cases, even be
less than the normal word spacing, as shown in the example in Fig. This can even
occur if no ruling lines are present.

2This has the effect of leaving out superscript, subscript, and other small items of text which may
occasionally occur in a paragraph. These are then added to their respective paragraphs at the end of
processing.

47

Chapter 3. A system for document analysis of PDF files

The reader still recognizes the delineation between each individual column head-
ing because of the clear column-based structure below, and because the headings are
still consistently aligned with the data in these columns. We therefore check for such
structures at every iteration of the segmentation process. After the columns have been
clustered together, our heuristic detects that the text block has developed one or more
rivers of whitespace and splits the headings (maximum 2 lines) appropriately.

3.4.4 Postprocessing

After execution of the ordered-edge segmentation algorithm, any resulting segments
that are crossed by a ruling line are split across their constituent fragments. This way,
any table cells that were erroneously merged together are split apart. Also, super-
script, subscript and other small items of text located next to the boundaries of larger
text blocks are merged together with these text blocks.

3.5 Experimental results

The algorithms for object extraction and segmentation were tested on a dataset con-
taining the front pages of 50 different issues of The Sydney Morning Hemlcﬂ The ob-
jects that were obtained as a result of the processing step were visually compared
against what a human reader would deem to be the correct result or “ground truth”.
The results are shown in Table[3.3

The experimental evaluation raised two important issues: Firstly, in our case, the
ground truth was very open to interpretation, as exemplified in the following ques-
tions:

e Which lines on the page are materially important in gaining an understanding
of the document’s structure and which are not?

e Should indented paragraphs, which are not separated by extra whitespace, be-
long to individual blocks?

There are, of course, several levels of granularity in which a document could be
represented and the results of our algorithms can only be seen as a first step in the
document understanding process. For example, indented paragraphs within blocks
should then be detected by appropriate methods at a later stage. It was therefore
very difficult to generate quantitatively measured results, as the evaluation process is

3The Sydney Morning Herald, http: //www.smh.com.au

438

3.5.

Figure 3.11: An example of segmentation errors in text inside a diagram

Figure 3.12: Example of the ordered-edge segmentation algorithm failing to correctly

segment a table

IRobbie
[, who
r Fine

MALARALL LA LASAU MA waLTE) S A eas

Evatt Foundation seminar on

or the

.obbie
W re
eed to
: with
ries of

aive”
nour’
ourfu
during

not re-
2 call]
tofhi
nd col-
while
rainer

dney’s|
ancar-

isoners is
ny and the
orted.

» Congress
ly six pris-
g, but that
hat the re-
al Albert
losed, sub-
s of last

6 prisoner
Or suspec-
rovided by
k after re-
i reviewed
vestigators
liries and

criminal
navy offi-
still under

leavlng court in New York on 'llwsday
after he was convicted of all charges.

technology
The verc

CURRENCIES | New York

Tuesday 4 P.M. Previous
€l= $1.3315 $1.3369
£1= $1.9128 $1.914
$1= ¥104.49 ¥104.925
$1= SF11645 SF11594

Full currency rates | Page 14

OIL| New York

Tuesday 4 P.M.

Light sweet crude $55.05 @‘ $0.10

Pus
EU w:

By James F

PARIS: T
hind the cl
London’s v
that who
Deutsche E
States won
bigeest ma:

49

Experimental results

Chapter 3. A system for document analysis of PDF files

Item type Clusters Ruling lines | Bitmap images | Rectangles
Total 3157 414 527 568
Detected 2978 (94.3%) | 333 (80.4%) 510 (96.8%) 536 (94.4%)
False positives 13 (0.4%) 22 (5.3%) 0 (0.0%) 45 (7.9%)
Precision 99.57% 93.80% 100.00% 92.25%
Recall 94.33% 80.43% 96.77% 94.37%
F-measure 96.88% 86.61% 98.36% 93.30%

Table 3.3: Results of the document analysis system

subject to a degree of subjectivity. For this reason, we adopted a somewhat tolerant
approach when judging whether a given object was represented correctly or not. In
the case of paragraphs beginning with indentations, we allowed them to be merged,
as we had not designed the segmentation algorithm to specifically cope with such
layout conventions.

3.6 Discussion

In general, the ordered-edge segmentation algorithm was found to produce very
good results, as objects were rarely split or overmerged. Because the dataset in-
cluded a large number of diagrams with text labels, the ratio of correctly detected
clusters was not as high as expected. As these diagrams do not have a Manhattan
layout structure, the labels were frequently overmerged, as shown in the example in
Fig.[3.11}

An alternative interpretation would be to class these labels as parts of images and
therefore as false positives, which would lead to a significantly higher recall value.
In practice, we are not interested in text in diagrams, which are ignored anyway later
on in the processing pipeline. Unfortunately, we found that our evaluation strategy
did not discriminate between unimportant errors in diagrams and catastrophic seg-
mentation errors, for example when two columns of an article were merged together.
Fortunately, the latter type of error was a seldom occurrence.

Our algorithms did also return some false positives, in particular for ruling lines,
which were found, upon inspection, to be part of illustrations or diagrams. When
designing the algorithms, we decided to err on the side of caution and output false
positives rather than miss important line objects. For our purposes, this is not a big
problem at all, as in our later processing steps, vector objects not in the vicinity of text
are ignored anyway. Although the result is more than adequate for our purposes, fur-
ther development on our vector diagram/image recognition heuristic should result
in this number being significantly lower.

50

3.7. Conclusion and further work

Even with digitally generated PDFs, certain graphic elements on the page (in
particular advertisements) would have their text included in bitmap or vector form,
rather than as text instructions. These text items were not found by the system. The
same applies to logos. We found these to be generally text items of little interest.

Finally, a number of errors occurred where major ruling lines were either not de-
tected on the page at all or in the wrong position. We found this to be due to a missing
or incorrect implementation of the PDFBox code which handles the transformation
matrix, rather than a problem with our approach.

3.7 Conclusion and further work

This chapter has presented in detail an approach for extracting textual and graphical
data from PDF documents at a level of granularity suitable for document analysis
purposes. A bottom-up segmentation algorithm was also presented, which reliably
groups these segments into blocks representing individual logical items on the page
and copes well even with complex layouts. As the resulting data is designed to be
used for further processing, the numeric results cannot be directly compared to the
precision and recall values of other document analysis systems. However, we are able
to use the results of these processing steps in the further stages of the two wrapping
approaches.

The ordered-edge segmentation algorithm was found to produce very good re-
sults by visiting the more ambiguous edges later on in the process, when significant
higher-level knowledge was also available. However, some errors did still occur, par-
ticularly in tabular layouts, as shown in the example in Figure Here, one can
see that the middle column of the table was merged with the line of text below and
the space between the words Full and currency was seen by the system as a column
gap. This is due to the system’s model being rather limited: at this stage of segmenta-
tion, no distinction is made between text blocks which are paragraphs and text blocks
which are table columns. Instead, a generic set of conditions is used for each text
block at this stage of the process (uniform line spacing and font size, etc.) The clas-
sification of text blocks into paragraphs and table cells/columns occurs during table
recognition (see Chapter [4), where knowledge at an even higher level is available.

A further improvement could be achieved by modelling document knowledge at
multiple granular levels more accurately and by improving the integration between
the various processing steps. The ordered-edge segmentation algorithm can be seen
as the first step in this direction. Section [7.2| describes this issue in more detail and
proposes future work.

51

Chapter 3. A system for document analysis of PDF files

3.7.1 Exploiting hidden information in PDF documents

In developing the extraction algorithms from PDF, we noticed that the structure of the
PDF and the ordering of the operators usually represent how the document would
have been stored in the computer system’s memory at the generation stage. There is,
in fact, a wealth of extra information available in the source code of a PDF which is
lost when the PDF is printed, rasterized or converted. For example:

e the order in which text blocks are written to the PDF usually resembles the read-
ing order of the page;

e text in subinstructions within a single Tj instruction almost always belongs to
the same logical text block (except in some tabular columns);

e the use of transformation matrices could provide hints for identifying complex
objects and how the various parts of the page are grouped.

It is possible to code a PDF in a variety of different ways and still end up with the
same visual result. However, most document authoring programs (such as DTPs and
word processors) simply generate the PDF (or printout) in the most straightforward
manner. Because the code structure cannot in all cases be relied upon to reflect the
logical structure of the document, most PDF analysis approaches have ignored it com-
pletely. We believe that this information could, if correctly processed, be combined
with traditional document understanding techniques and used in a probabilistic fash-
ion to improve the robustness of such a system. In a similar way, tagging information,
which explicitly denotes logical structure within a PDF document, could also be used
in cases where it is available.

52

Chapter 4

Table recognition

Because of their ability to present information in a compact and easy-to-understand
form, tables have long attracted attention from researchers in the information retrieval
field. Tables occur in all shapes and sizes, and a multitude of different formatting con-
ventions can be used to convey logical relations between data elements. As we are
working on document generic data extraction techniques, we cannot make any pre-
sumptions about the formatting conventions that will be used and therefore require
an approach that works on as wide a variety of tables as possible.

This chapter describes our work on table detection and table structure recognition
from PDF files. Section 4.1]introduces tables in the context of information retrieval,
and clarifies the distinction between the three stages of information extraction from
tables: table detection, structure recognition and table interpretation. Section [f.2) presents
related work and Section {4.3| presents our algorithm for table recognition and struc-
ture detection, which was also published in [Hassan and Baumgartner|2007]. In Sec-
tion [4.4] we present comprehensive experimental results of our system and compare
them to a more recently published system [Ruffolo and Oro 2009], which also per-
forms table detection and structure recognition from PDF files.

4.1 Tables in the information retrieval field

[Hu et al[2002] splits the task of table recognition into two stages: table detection, the
detection of regions in the document which contain tabular data, and table structure
recognition, the recognition of sub-structures, such as rows and columns, within the
table. To begin to address the first stage, we may ask ourselves: “What is a table?”
And what may seem a simple question at first becomes far more difficult when we
try to precisely define a table. Quoting Lopresti and Nagy:

53

Chapter 4. Table recognition

A precise definition of “tabularity” remains elusive because some bu-
reaucratic forms, multicolumn text layouts, and schematic drawings share
many characteristics of tables. There are significant differences between
typeset tables, electronic files designed for display of tables, and tables
in symbolic form intended for information retrieval. ([Lopresti and Nagy
2000], p- 1 [93])

There have been several definitions of tables in the literature on information extrac-
tion, some of which attempt to be broad enough to encompass all tables. With refer-
ence to the information contained in tables, Green provides the following definition:

Tables are rectangular arrays of image space within which information
in row and column regions are related in some way. It is convenient to
think of two types of tables, physical tables and logical tables. Physical ta-
bles are the printed manifestation of relational information. Logical tables
are “relations”, in a relational database sense (in fact, relations are called
tables in SQL). It is a common practice to combine more than one rela-
tion via merges and joins, in the preparation of generating the data prior
to printing it; thus a printed table may represent more than one relation.
Also, the same relation or set of relations will have many possible physical
table layouts. ([Green|1996])

Clearly, a very important characteristic of tables is their integral row-and-column
structure, which allows the relationships between data items to be instantly recog-
nized and understood. We need to ask ourselves which visual features tables exhibit,
which make their structure—and existence—clear to the human reader. A variety
of such cues, such as ruling lines, alighment, shading and whitespace, are commonly
used in tables published in PDF format. From our experience with several data sets of
tables, we can conclude that clearly demarcated rows are not always present in tables.
But a clear column structure is almost always present. In fact, this column structure is
what differentiates a table from other elements on the page. See Figure 4.1|for an ex-
ample. Therefore, our algorithm begins by looking for such column-like structures,
or candidate columns, on the page (see Section [£.3.1)). This approach is reflected by
Hu et al., who state that:

Columns are the most visually dominant structural components of a
table. ([Hu et al.2001a], p. 1)

To address the second stage, table structure recognition, we refer back to Green’s def-
inition of physical and logical tables. Whereas physical structure refers to the rows and

54

4.1. Tables in the information retrieval field

Figure 4.1: Even when all the information is removed and just the block outlines
remain, the existence of a tabular structure is immediately obvious to the human ob-
server

columns of the table, the logical structure refers to the logical relationships between
the table’s individual cells. [Wang|1996] defined the concept of an abstract table and
has shown that the same logical information can be presented in tables with com-
pletely different layout structures. As a simple example, consider transposing any
table so that the rows become columns and vice versa.

[Hurst2000] (p. 156) notes that, whereas document analysis systems have tradi-
tionally strived to reconstruct the logical structure of other document elements, such
as headings, paragraph text, images and captions, they have not attempted to infer
abstract logical relations from the tabular content itself. This could have its roots in the
design of modern word-processors, which provide markup for other logical elements
of a document, such as styles, but only for the physical row-and-column structure of a
table. Clearly, there is some ambiguity in the meaning of the term “logical structure”
as used by the document understanding and information extraction communities. A
purely physical, or geometric description of a table would not even include row or
column sub-structures but simply define their cells by their co-ordinates or neigh-
bourhoods. Therefore, the grouping of cells into rows and columns could already
be seen as the first logical step, as it already relates the cells to each other. To avoid
ambiguity, we use the following terms to define the three major sub-tasks in the table
understanding process:

e table detection, the detection of regions in the document which correspond to
tables;

e table structure recognition, the detection of the table’s physical sub-structures,
i.e. rows, columns and cells; and

e table interpretation, inferring abstract logical relations between the table’s data
cells from their physical structure.

55

Chapter 4. Table recognition

In our application, we need to detect tables and convert them into the row-and-
column model of HTML. Therefore, we only need to concern ourselves with the first
two stages of table understanding. We may ask ourselves: “Why is this? Where does
table interpretation take place?” The answer is, in the process of defining a wrapper, the
user implicitly uses his understanding of the abstract information of the table to select
which cells to extract. The only requirement is that all other wrapping instances are
laid out in the same way: the logical-to-physical mapping must remain the same. There-
fore, for our application it is sufficient just to detect the rows and columns in tables.
The next section gives an overview of the literature in table structure recognition.

4.2 Related work in table structure recognition

A number of research groups have previously addressed the problem of table struc-
ture recognition in documents. Earlier publications have concentrated primarily on
ASCII tables from legacy terminal applications which are set in a fixed-width font
and contain no graphic objects. As the fixed-width ASCII output format began to lose
popularity and the combination of technologies such as the Internet, increasing band-
width and the PDF format enabled the circulation of graphical documents, the focus
started to move towards tables in document images.

[Green and Krishnamoorthy|1995] describes an early system which analyses ta-
bles in scanned images using manually specified models. Using connected compo-
nent analysis, the physical structure of the document (e.g. segments, whitespace and
ruling lines) is obtained. A table is modelled using these components, some of which
may repeat for each new record in the table. Once the model has been specified, it
can then be used on other similarly structured tables. Because the model, which es-
sentially represents the physical structure of the table, is specified by the user, this
system could actually be seen as an early wrapping system for tables, which in fact
bears a resemblance to our graph-based approach to wrapping (see Chapter [6).

[Rus and Summers||{1997]] describes an algorithm to locate and understand the
structure of tables in ASCII documents. A whitespace density graph (see Section
is used to locate column boundaries. Lexical analysis on the columns is then
used to determine whether a candidate table is indeed a real table. Because the input
documents are all in fixed-width text format, only a limited number of layout con-
ventions are supported. For example, the system does not appear to work on more
complex or multi-column layouts (which very rarely occur in ASCII format, due to its
relative simplicity). It is therefore only necessary to detect the vertical start and end
positions of tables. Furthermore, the system does not appear to support spanning
columns, which are anyway rare in such documents.

56

4.2. Related work in table structure recognition

Kieninger et al. have also worked on recognizing similar tables mostly set in fixed-
width fonts. In contrast to [Rus and Summers 1997], they use a bottom-up approach
[Kieninger 1998] (as described in Section , which enables their algorithms to
work on more complex layouts, as they are not significantly affected by other, non-
tabular areas of the page. Their original T-Recs system [Kieninger and Dengel 1998b|]
clusters text bottom-up into columns. A number of rules are then used to split incor-
rectly merged columns and deal with other errors that may occur as a result of the
bottom-up clustering process. Neighbouring columns are then merged into tables by
overlaying a grid structure. Although the method claims to be applicable to any type
of document, examples are only given on ASCII documents and it appears too simple
to be suitable for documents with more complex layouts. As with many other systems
in the literature, ruling lines are ignored. The improved version, T-Recs++ [Kieninger
and Dengel 2001]], works in two phases: first, candidate columns are detected, which
are clustered to form tables. A plausibility check is then carried out to ensure that the
final object actually represents a real table, which counters one of the weaknesses of
the previous system. Experimental results of the system applied to the business letter
domain are given. We have borrowed some of these techniques in designing our table
recognition algorithm (see Section[4.3).

[Wang|2002] has taken a different approach, using a probabilistic model for the
structure of a table and formulating the table recognition problem as a statistical op-
timization problem on multiple granular levels. The method takes a set of segmented
blocks as input (the system claims to work on both ASCII and fully graphical doc-
uments) and finds candidate columns by searching for vertical rivers of whitespace.
The probabilities are modelled using several properties of the text, such as justifica-
tion, baseline difference and leading. Using an iterative updating optimization algo-
rithm (statistical refinement), the preliminary detection results are adjusted and even
segmentation and labelling errors can be corrected.

Hu et al. have developed techniques primarily for ASCII documents, but which
also work on scanned document images. The table detection method described in
[Hu et al. 2000] calculates scores for each line in the document to find the most likely
table regions. Although the authors also perform experiments with scanned images
of documents, the algorithm does not appear to support more complex layouts such
as multi-column documents. Furthermore, it ignores non-textual elements such as
ruling lines. Their table structure recognition algorithm [Hu et al.|2001a] uses hierar-
chical clustering combined with heuristics to determine where the region should be
“cut” into columns. Table headings are detected, and spanning columns are sup-
ported in heading cells. Finally, row segmentation is performed using heuristics
which merge rows according to missing data in columns.

57

Chapter 4. Table recognition

An interesting table detection algorithm is presented in [Kriipl and Herzog2006],
which aims to detect “real” tables on Web pages. Although tables are usually explic-
itly represented as such on web pages, the misuse of the <TABLE> tag for general lay-
out structures makes it increasingly difficult to detect real tables in HTML documents.
Kriipl and Herzog's algorithm works on the visual level, much like the approaches to
table detection for printed documents, to distinguish real tables from other data laid
out using <TABLE> tags. Their system is built upon the Mozilla rendering engine and
uses heuristics specific to the way that Mozilla renders tables, making it difficult to
adapt for printed documents.

The problem of recognizing table structure has also been addressed in the com-
mercial software domain, but publications are scarce. [Zuyev||1997] presents a
method, which is highly dependent on ruling lines being present, to detect tables
in scanned images of pages. This method has been integrated into the FineReader
OCR product. The latest versions of Adobe Reader and Acrobat also allow tables to be
exported from PDF files in a format that preserves their row and column structure.
However, the user has to perform the “detection phase” and mark the table first.

Recently, a small number of publications have addressed the problem of detecting
and extracting tables from PDF documents. [Yildiz et al.2005] presents an algorithm
that examines the page line-by-line. Heuristics are used to detect the presence of
columns if a line contains more than one text element. These columns are then merged
into tables. Because the PDFTOHTML tool [Kruk/2006 (Web)] is used to obtain infor-
mation about the location of text blocks on the page, graphical and typographical
information is not made available to this algorithm.

The PDF-TREX system [Ruffolo and Oro|2009] is designed to detect and recog-
nize structure from PDF documents using text block objects. Text fragments are seg-
mented into lines based on thresholds, each of which is labelled text line, table line
or unknown using heuristics. Ruling lines appear to be ignored by the system. Tables
are then built in a bottom-up fashion from lines labelled as table line or unknown.
Finally, heuristics merge row lines which contain only one table line and several un-
known lines. The algorithm is able to detect tables with spanning columns and empty
cells. This algorithm was actually published two years after our method (as described
in Section was published. A further contribution of their work is the publication
of a freely available dataset of PDF documents containing tables, with which we have
evaluated both methods in Section 4.4l

58

4.3. The table recognition algorithm

4.3 The table recognition algorithm

This section describes our table recognition algorithm, which takes as input a page
containing the clusters as found by the ordered-edge segmentation algorithm in Sec-
tion as well as the ruling lines that have been detected on the page. The algo-
rithm is designed to detect both ruled and non-ruled tables; if ruling lines are present,
they will be used to aid the recognition process.

The table recognition algorithm is divided into the following stages, which are
described in detail in the following subsections:

e first, candidate columns are found from vertically neighbouring text on the

page (see Section |4.3.1);

e the table search algorithm then attempts to find complete tables by grouping
together horizontally neighbouring candidate columns. This algorithm searches
for the maximal table that passes our validation check (see Section ;

e the table validation procedure is used to verify whether a candidate table is
indeed a single, valid table. In order to do this, the table’s individual rows and
columns are determined (see Section 4.3.3).

We model a table as a rectangular m x n matrix, where m,n > 2. Each cell can con-
tain textual data or be empty. Additionally, each cell can span more than one column.
Because it is not possible to reliably detect spanning rows from the physical structure
of the table alone (see Section [4.3.3.2), our detection algorithm does not support row-
spans. For the same reason, we also do not distinguish between data (<td>) and access
or heading cells (<th>) as in HTML. In the remainder of this chapter, the term data cell
is used to refer to a cell containing textual data, as opposed to an empty or blank cell.

Several illustrations throughout this dissertation show the result of our table
structure recognition algorithm graphically, as displayed by the PDF Analyser user in-
terface (see Section . Here, the bounding boxes of the detected rows and columns
are superimposed on the page view. Columns are shaded in a green colour, and rows
(and entire table areas) are shown in pink.

4.3.1 Candidate column finding

To begin with, we look for column-like structures, or candidate columns, on the page.
To do this, the segmentation algorithm in Section [3.4.3]is reused to look for groups of
vertically adjacent clusters and “cluster” them into TableColumn objects. This time,
the following modifications are made to the procedure:

59

Chapter 4. Table recognition

o the list of clusters, instead of (text) lines, is given as input and a list of TableCol-
umn objects is returned as output;

e the vertical threshold is increased to 3.5f (f = average font size);

e the edges are sorted in a different order, which prioritizes edges that are aligned
and narrow. In particular, vertical edges whose segments are left-, centre- or
right-aligned are considered before other edges. Among these edges, edges for
which the longest segment is the narrowest are considered first;

e a modified clusterTogether function is used, to ensure that spanning columns
do not merge neighbouring columns together:

— for every vertical edge that could potentially join two pairs of clusters, the
rectangular containment expansion procedure (see Section is exe-
cuted. If extra clusters not belonging to either of the two original clusters
are added to the result, clusterTogether returns false.

Fig. 4.2| shows the results of this procedure on a sample document containing non-
ruled tables. Each text element, even paragraph text, is allocated to a candidate col-
umn which will initially be used in the search for tables. These paragraphs are later
discounted in the validation procedure, either due to their attributes (e.g. width) or
because they cannot be meaningfully merged into an existing table.

Note that, because of significant vertical gaps in the columns, many columns are
not found as a whole, but rather in parts. This does not cause a problem for us, and
is preferable to over-merging. Because of rectangular containment expansion (see
Section [£.3.2.2), in most cases only one candidate column needs to be found for each
vertical position in the table.

4.3.2 Table search

The table search procedure is shown in Algorithm [} After the candidate columns
have been found on the page, we begin our search procedure, which looks for can-
didate tables as groups of candidate columns within a rectangular bounding box. We
tirst sort the candidate columns in ascending order of their width ratio, i.e. the width
of the column divided by its height. In this way, the columns “most likely” to belong
to a table are considered first. The purpose of this is twofold: Firstly, unnecessary
iterations can be avoided, leading to improved performance of the algorithm. More
importantly, as the search procedure does not reconsider candidate columns that have
already been considered for another table, the ordering of candidate columns enables

60

4.3. The table recognition algorithm

Phosphorus (yellow or white) 7723-14-0 Only if it is a yellow or white form.

Sulfurie acid (acid aerogols including mists, vapors, gas, fog, and ~ 7664-93-9 Only if it is an aeresol form ag

‘other airborne forms of any partficle size) defined.

Vanadium (except when contained in an alloy) [7440-62-2 Except if it is contained in an alloy.

Zinc (fume or dust) 71440-66-6 Only if it i in a fume or dust form.
Thequalifier for the following thres chemicals is based on the chemical activity rather than the form of the chemical. These chamicals
lare subject to EPCRA section 313 reporting requirements only when the indicated activity is performed!

Chemieal/ Chemical Category CAS Numher Qualifier

- NA
tacility: or are processed or otherwise
and dioxin-liks compounds are present as chermical but only if they were created
contaminants in a chemical and if they were created during the manufacture of that chemical.
67-63-0 Only if if 18 bemg manufactured by the
by the gfrone acid process are subject, no supplies strong acid process. Facilifies that process
noftification) or otherwise use isopropyl alcohel are not

Figure 4.2: Example of the candidate column finding procedure

The qualifier for the following three chemicals is based on the chemical activity rather than the form of the chemical. These chemicals
are subject 1o EPCRA section 313 reporting requirements only when the indicated activity is performed.

There are no supplier notification requirements for isopropyl alcohol and saccharin since the processors and users of these chemicals
are not required to report. Manufacturers of these chemicals do not need to notify their customers that these are reportable EPCRA

Figure 4.3: The table in Figure[4.2] with the final rows and columns

61

Chapter 4. Table recognition

us to avoid the search procedure getting stuck in local minima and therefore missing
important tables.

We put the sorted candidate columns into an unused column list and remove the
first column from this list. We check if this column intersects any objects, such as
horizontal ruling lineﬂ By rectangular containment expansion (see Section ,
we then proceed to find the other items in the table. If no other objects are intersected
at this stage, the rectangular containment expansion procedure will fail to add any
new objects to the table. We then perform a validation check (see Section 4.3.3.3) to
ensure that our candidate table meets the requirements for a (partial) table.

If the validation check is passed, we then attempt to expand the table by adding
neighbouring candidate columns to the left and right. We begin by adding columns to
the left. After each addition, we perform rectangular containment expansion and then
proceed to validate the table. If validation fails, we return the table to the previous
state and try expanding to the right. If there are no more items to the left, we also try
expanding to the right. When, for one of the same reasons, we cannot expand to the
right any more, we revert back to expanding left, as the possibly enlarged bounding
box due to rectangular containment expansion may give us additional neighbouring
blocks to the left.

When we cannot expand the table any further, we add it to the output result. If the
table fails our validation procedure for a full table at this stage, all the columns (apart
from the first) remain in our unused list. Otherwise, the candidate table is converted
to a Table object and all the candidate columns are removed from the unused list.

4.3.2.1 Table classification based on ruling lines

We have found that, when horizontal lines are used to delineate rows in a table, they
are practically always the entire width of the table. This allows us to terminate the
search procedure early once a horizontal ruling line is encountered. First, we apply
some preprocessing to all line objects in the document, to merge any dotted or touch-
ing lines that have been written in parts to the document. Secondly, we need to ensure
that these lines represent ruling lines, and not the underline of headings, or separators
for headers or footers on the page. We do this by checking that the line is significantly
wider than the widest candidate column it intersects, and does not appear above or
below the last or first two lines of paragraph text on the page respectively.

1We have found that, for tables which contain horizontal ruling lines, these ruling lines usually span
the entire width of the table. Thus, the process of rectangular containment expansion allows us to find
such tables using only one iteration.

62

4.3. The table recognition algorithm

Algorithm 4 The table search algorithm

pre: C, the list of unused columns, is sorted according to the columns” width ratio

1. while (C is not empty)

(a) initialize T as new candidate table
(b) remove first candidate column ¢; from C and add it to T’s items
(c) enter loop to start expanding T

i. first try expanding T by adding neighbours on the left:
e add the neighbour directly on the left of T to T

e perform rectangular containment expansion (Alg.[5), on the com-
posite segment T

e perform the validation procedure (Alg.[/) on T. If this procedure
fails, set the contents of T to the last known correctly validated
state

e repeat steps A-C until validation fails or there are no more neigh-
bours to the left of T

ii. expand T by adding neighbours on the right (the steps are the same as
ini.)
iii. repeat stepsi. and ii. until no new candidate columns are added to T
(d) if T passes the validation check, add T to the output list. Ensure that all
items within T have been removed from C

(e) if T fails the validation check, return all but the first item in T to C

4.3.2.2 Rectangular containment expansion

Up to now, we have always grouped lower-level document objects into higher-level
objects based on their neighbourhood. As mentioned in Section[2.2.3] this has allowed
us to cope with layouts that are not strictly Manhattan in nature. For tables, we make
the very realistic assumption that a table boundary will always be rectangular. This
assumption allows us to efficiently build tables from their constituent columns by just
considering their joint bounding box, using a procedure which we term rectangular
containment expansion.

As an example, let us imagine that we have a candidate table that contains two
columns. We find the smallest bounding rectangle, or bounding box, of this object
group, and therefore of the candidate table. We then find that this bounding box
intersects other objects on the page, so we proceed to add them to our candidate
table, and find its new, enlarged bounding box again. We repeat this procedure until

63

Chapter 4. Table recognition

Algorithm 5 Rectangular containment expansion

pre: S represents the composite segment to be expanded; P represent the page as a
set of all its items {p1, p2, ..., pn } at the current level of granularity.

1. foreach p in P:

(a) if p intersects the bounding box of S and is a text segment or horizontal
line:
i.addptoS
ii. recalculate the boundary of S, i.e.:

e if the bounding box of p extends outside of S’s boundary, enlarge
the bounding box of S such that it completely encloses p

2. if the bounding box of S has been altered in step 1, repeat this step

the bounding box is not grown any more, and therefore no more items are added.
This procedure is shown in Algorithm 5|

Referring back to the example in Fig. the lower table can be found using rect-
angular containment expansion, once at least one candidate column segment belong-
ing to each of the three columns has been added. As this method does not consider
non-rectangular tables, it enables us to explore the search space very efficiently.

4.3.3 Table validation and structure understanding

Once a candidate table is found, we perform the following procedure, which attempts
to rediscover the table structure by determining its columns and rows (see Sections
14.3.3.1|and [4.3.3.2| respectively). Once the rows and columns have been determined,
the validation procedure is called (see Section[4.3.3.3) to determine whether the table
is indeed a real table. The following sections describe the algorithm in more detail.
Figure 4.4{summarizes the table understanding and validation process.

Should rows
be split?

Column-finding
procedure

Split rows Merge rows Validate table

Row-finding procedure

Figure 4.4: Process of understanding and validating a table

64

4.3. The table recognition algorithm

As well as the result of the validation check (true or false), this procedure returns
the detected rows and columns of the table, according to our table model as defined
in Section [A.1]

4.3.3.1 Column finding

The column-finding procedure takes the list of candidate columns as input and at-
tempts to merge them to form complete columns. First, an adjacency graph (see Sec-
tion is generated on the candidate column list. Then, the vertical edges of the
graph are examined in turn. If two candidate columns are joined by a single vertical
edge and no further edges exist from either column to another candidate column in
the same direction, then these columns are merged together. Otherwise, one of the
columns is determined to span more than one horizontal cell and its colspan attribute
is set accordingly, as shown in the example in Figure This procedure is given in
Algorithm 6]

Algorithm 6 The column-finding procedure

1. create adjacency graph G on candidate columns C
2. let E be the list of southward pointing edges in G

3. while E is not empty

(a) remove e = ¢, the first edge from E
(b) determine whether e lies along a colspan interface. if it does:

i. adjust the values of colspan for the respective columns accordingly

ii. if either column does not already exist in the output list, add it to the
output list

(c) else

i. merge both nodes of e to form a single, larger column and, if it is not
already there, add it to the output list

4.3.3.2 Row finding

It is not always straightforward to determine where rows begin and end in a table.
Many tables use spacing, some use ruling lines, and some use a combination of both.
At this stage of the process, we still do not know whether the clusters represent single
cells or groups of one-line cells. The row-finding procedure takes as input a list of

65

Chapter 4. Table recognition

table cells; therefore, if the current list of clusters (items of the individual columns)
contain more than one line per cluster, they need to be split into their individual cells.

As the ordered-edge segmentation algorithm (see Section forms clusters
based on distance between the segments, the clusters should already represent sin-
gle rows if white space is used as the row delimiter. If the rows are delimited by
horizontal ruling lines, the splitting will have already occurred during the ruling ob-
ject postprocessing stage (see Section [3.4.4). The remaining class of tables is more
difficult: many tables, particularly from the financial sector, consist solely of one-line
rows, without any explicit delimiters. Because of the content of the rows (typically
numerical data and sometimes alignment), it is obvious to a human reader that each
line of text belongs to a separate row, even though no separator is present.

Because such tables can also include horizontal ruling lines to further group the
rows, we cannot rely on the complete absence of horizontal ruling lines to signify that
each line represents an individual row. (The alternative in this case would be a 1-row
table, which does not fit our definition of a table.) We therefore examine the textual
content in each of the columns to determine whether all multi-line rows need to be
split. As long as at least one column is found with content that appears to require
splitting into individual rows, the entire table is split in this way. We believe this to
be similar to the way a human reader analyses such tables; in many examples such
as Figure 4.6} it only becomes apparent from the numeric data columns that each line
represents a separate row. It would be difficult to come to this conclusion by looking
at the leftmost row alone (even if the reader understands Italian).

The heuristic function splitRows iterates through the columns of the table and
analyses their content. If the average line length (in characters) of the column is be-
low a certain threshold (which, to prevent false positives, depends on the height of
the column), the entire table is deemed to require splitting of the rows into individ-
ual lines. Nonalphabetic characters, such as numbers, do not count towards the line
length measurement, which also allows longer strings of numbers to occur.

It is worth noting that the methods presented in this section do not always cor-
rectly find the rows in a table. This is because it is not always possible to detect rows
from the layout alone; an analysis of the content and, ideally, domain-specific knowl-
edge is required. Although the function splitRows is a step in this direction, these
techniques are outside the scope of the work presented in this dissertation. For this
same reason, we do not aim to detect spanning rows or distinguish between access or
heading cells and data cells.

After the start and end of each row has been determined, the table cells are merged
horizontally into rows using the adjacency graph. Further checks on baseline align-

66

4.3. The table recognition algorithm

XXXXX XXXXX Spa — data stipula contratto: 06.03.02 — tipologia bene locato: Immobile — durata contratto:
06.02.14 — maxicanone

- ///WW

|

1
| [

%/
-
/
.
%

N (=eiecan
I
.

Figure 4.5: Example of spanning columns in a table, which are not merged to their
vertical neighbours by the column finding procedure

Figure 4.6: Example of a table from the financial domain, in which each line of text
represents an individual row

67

Chapter 4. Table recognition

) Mozilla Firefox

Fle Edit Yiew Go Bookmarks Tools Help Q
@ - - = @ [flex/focahostje: Ry 2003chemicallist hul ¥ @ [2, |
AILUUILIC TULLLS UL dlly PALUCIC SIZT) 45 UcLLIcy, =
Phosphorous (vellow or white) 7723-14-0 2?1; if it is a yellow or white
Sulfuric acid (acid aerosols including mists, vapors, gas. fog. and other 7664-93-0 Only if it is an aerosol form
airborne forms of any particle size) as defined.
Vanadium (except when contained in an alloy) 7440-62-2 ::]i(:;ﬁ ifitis contained in an
Zine (fome or dust) 7440-66- O Fitisin a fome or dust

The qualifier for the following three chemicals is based on the chemical activity rather than the form of the chemical. These
chemicals are subject to EPCRA section 313 reporting requirements only when the indicated activity is performed.

o ‘ CAS .
Chemical/ Chemical Category Number Qualifier
Dioxin and dioxin-like compounds (manufacturing; and the Only if they are manufactured at the facility; or
processing or otherwise use of dioxin and dioxin-like are processed or otherwise used when present
compounds if the dioxin and dioxin-like compounds are NA as contaminants in a chemical but only if they
present as contaminants in a chemical and if they were created were created during the manufacture of that
during the manufacture of that chemical.) chemical.
Only if it is being manufactured by the strong
Isopropyl alcohol (only persons who manufacture by the 67-63-0 acid process. Facilities that process or
strong acid process are subject, no supplier notification) otherwise use isopropyl alcohol are not
covered.
Saccharm (clxnly persons who manufacture are subject, no 81-07-2 | Only if it is being manufactured.
supplier notification)

There are no supplier notification requirements for isopropyl alcohol and saccharin since the processors and users of these
chemicals are not required to report. Manufacturers of these chemicals do not need to notify their customers that these are v

Done

Figure 4.7: The table in Figure after its conversion into HTML

ment are carried out to help avoid falsely merging rows (e.g. where spacing is tight
or where heading cells spanning several rows are aligned differently).

4.3.3.3 Table validation

Once the rows and columns of the table have been found, the table validation func-
tion performs a number of checks to determine whether the row-and-column struc-
ture resembles an actual table. Tables in documents can occur in a multitude of con-
figurations, sometimes with very complex layouts, and therefore we have designed
this function to be very permissive and return a positive result even in cases where a
small percentage of rows overlap. This also helps us in situations where the row-and-
column structure has not been 100% correctly recognized: the majority of the table
will still be correctly extracted in this case.

As candidate tables are validated at each iteration of the search process, the table
validation function is also designed to return true for partial tables which have not
yet completely been found. The conditions for a valid table are shown in Algorithm 7]

63

4.4. Experimental evaluation

Algorithm 7 The table validation function

Return true if the following conditions hold, otherwise return false:

e the table must have dimensions of at least 2 x 2, otherwise it is considered in-
valid. If the number of columns or rows is less than or equal to 3, the table is
deemed less likely to be valid and the reduced tolerance flag is set to true;

¢ no table cell may contain more than 6 lines of text (4 with reduced tolerance);

e at least 60% of rows (80% for reduced tolerance) must intersect at least 30% of
the columns in the table;

e atleast 55% of rows (80% for reduced tolerance) must not intersect another row
in the table;

e at least 55% of columns (70% for reduced tolerance) must intersect at least 55%
of the rows in the table;

e at least 55% of the columns (70% for reduced tolerance) must not intersect an-
other column in the table.

This way, we ensure that all tables contain a sufficient grid-like structure, whilst
avoiding false positives (which, in most cases, occur in paragraph text which has been
split up into lines).

4.4 Experimental evaluation

In the OCR domain, an active research field in the previous 30 years, a number of
ground-truthed datasets have been made available to researchers for the sole purpose
of creating experimental results to enable different systems and approaches from var-
ious research groups to be compared with each other. In contrast, in the field of table
structure recognition, which is still developing, no such dataset exists, particularly
with respect to PDF documents. Although the well-known University of Washington
datasets do include ground-truthed table areas within the document, they do not in-
clude any information on substructures such as rows and columns. Furthermore, the
data is in scanned bitmap format and not in PDF.

In this section, we compare the results of our system to a later academic approach,
the PDF-TREX system [Rutfolo and Oro 2009]. We are very grateful to the authors of
PDF-TREX for providing us with a dataset of 75 documents and the output of their
system on this dataset, which we have used to compare both systems. This dataset has

69

Chapter 4. Table recognition

since been extended to 100 document and has recently been made freely available
on the Internet [Ruffolo and Oro|2009 (Web)].

The biggest hurdle that we encountered was how to consistently evaluate the var-
ious types of structure recognition error (split cell, merged cell, etc.) that occurred. In
Section[4.4.T|we describe previous approaches to evaluating such errors and the prob-
lems that we encountered. In Section we propose a classification methodology
for each type of error that we encountered, and how it could be consistently evalu-
ated in the future. We hope that this represents a step towards creating common, re-
peatable experimental results that can be compared between different systems from
different research groups.

We also encountered further difficulties in ground truthing of the dataset (Sec-
tion 4.4.3) and in aggregation of the results for each cell and each table to create a
set of figures for the complete dataset (Section [4.4.4). The numerical results of both
systems are presented in Section and a discussion of these results is provided in
Section4.4.6l

4.4.1 Structure recognition issues

A common way to generate numerical values for the performance of table structure
recognition algorithms is to borrow the notions of recall and precision from the infor-
mation retrieval field [Ruffolo and Oro|2009; Yildiz et al.|[2005; Kieninger and Dengel
2001, 2005]. The PDF-TREX system was evaluated in this way, and separate figures
for table areas and table cells were generated. The usual definitions of these measures
are as follows:

number of correctly retrieved data items
Recall =

total number of data items in dataset

number of correctly retrieved data items

Precision = - :
total no. of retrieved data items

Essentially, recall measures the proportion of data that has been found correctly
without regard to false positives, whereas precision is a measure of how good the
algorithm is at avoiding false positives, without regard to recall. Many algorithms
can be fine tuned to maximize recall at the expense of precision, and vice versa; and
our algorithm is of no exception. The F-measure, which is defined as the harmonic

2The 75 documents used for our comparison correspond to the following documents in the publicly
available dataset: 1-12, 14-16, 18-23, 25-34, 37, 38, 40-42, 45-58, 60, 61, 63, 66-69, 71, 72, 75, 79-81,
83, 84, 86, 87, 89, 90, 92-98

70

4.4. Experimental evaluation

mean of precision and recall, is often used as a single-figure measure of the ability of
the system.

The biggest problem that arises with this approach is the not unambiguous inter-
pretation of the term correctly retrieved in this context. For example, let us consider the
simple case where a cell is erroneously split into two cells by the system. Note that
precision is usually defined as the proportion of data items that have been correctly
retrieved. Has the data in the split cell been “correctly retrieved” and do we there-
fore count these two cells as one true positive and one false positive, or as one false
negative and one false positive?

We found that the evaluation strategies used by Ruffolo and Oro [Ruffolo and Oro
2009] and by Kieninger and Dengel [Kieninger and Dengel 2001, 2005] would class at
least one cell resulting from the split as having been correctly retrieved, even if the data
was only partly retrieved (in the latter system, the best match according to the sub-
objects is found and evaluated as being correct). The remaining cells of the split are
classified as false positives, which results in this error affecting overall precision, but
not recall.

This simple example highlights the problems with using such a simple model
to represent errors in the recognition of more complex structures. In our system,
table cells may span multiple columns or consist of several lines of text. We therefore
need not only to deal with split and merged cells, but also with incorrectly detected
colspans, for example. How should such an error be evaluated in terms of false and
true positives?

Unfortunately, most previous publications in table structure recognition do not
describe their evaluation strategy in sufficient detail to enable it to be reproduced
precisely by a different team of researchers, in order to obtain a fair comparison of
both systems.

In Section we provide a wider range of table area and cell categories to ex-
plicitly represent the majority of detection errors that occur. In Appendix [A} we pro-
vide a classification of all structure recognition errors that we encountered in compar-
ing our system against the PDF-TREX dataset and how they were evaluated according
to these categories. We hope that this provides a step towards a common method for
evaluating table structure recognition results so that they can be directly compared
between systems from different research groups.

4.4.2 A classification scheme for structure recognition errors

As described in the previous section, the relatively simple model of true positives,
false positives and missed cells (true negatives) is not expressive enough to fully ex-

71

Chapter 4. Table recognition

press the various types of errors that can occur. We have therefore defined a larger
number of table area and cell categories, as shown in Table to explicitly represent
the majority of errors that can occur. This table also shows whether the category was
evaluated as a true positive, false positive, true positive or false negative in our final
numerical results. A classification of all types of errors that occurred in comparing
both systems against the dataset and how they were evaluated according to these
categories is given in Appendix|Al After having calculated our initial results, we de-
cided to create a second set of figures that better represented their usefulness for our
application (data extraction), by reclassifying certain true positive categories as false
positives.

In our results, the first occurrence of a split object was given the classification split
and the extra occurrences arising from the split were classed as extra. By defining the
classification split as a true positive, we obtain a similar evaluation metric to that used
in [Kieninger and Dengel 2001; Rutfolo and Oro|2009].

An important criterion in evaluating table structure recognition errors is the grav-
ity of the error itself, and not just the number of cells that are affected. This may de-
pend on the particular application. Let us consider a further example where a single
cell is split horizontally, causing an otherwise blank column to be added in between
the data columns in a table. A data extraction algorithm that locates the cells based
on their headings will still continue to function correctly for the other cells, as the
data cells remain correctly aligned. We therefore introduced two sub-classifications
for non-empty split cells: split full and split data. In the former, the textual data within
the cell is not split; only extra (false positive) blank cells result; in the latter, the textual
data itself is split across several cells. When calculating our results, we first classified
both types of split cells as true positives. We then calculated a second set of totals
by reclassifying split data cells as false positives, which we believe better reflects the
usability of the result for our application.

A further question is whether blank cells should be counted at all. Whereas Ruf-
folo and Oro’s evaluation strategy included blank cells, the strategy employed by
Kieninger and Dengel appeared not to. As most data extraction applications only use
the data cells, results which do not include blank cells in their totals could be seen as
being more meaningful. Furthermore, for non-ruled tables, it is not always clear how
many “blank” cells they contain, particularly in the case of cells along the edge of the
table. In our case, we assumed each table to be rectangular in shape (according to our
model), and represented any empty spaces along the table boundary as blank cells.
For each set of results, we generated two sets of totals: one including both blank and
data cells, and one excluding the blank cells.

72

4.4. Experimental evaluation

| Table areas \ | Data cells \ | Blank cells \ \

Found correctly TP Found correctly TP Found correctly | TP

Data cells found TP

Partially found TP/FP

Split table TP/FP || Split full TP Split blank TP
Split data TP/FP

Extra table FP Extra data FP Extra blank FP

Incorrect table FP Incorrect data FP Incorrect blank | FP

Merged into surroundings TP Merged TP/FP

Merged TP/FP

Not recognized TN Not recognized TN Not recognized | TN

Table 4.1: Classifications for table areas, data cells and blank cells

Regarding table areas, it was noted that, in the PDF-TREX result set, even partly
detected table areas counted towards the recall score. Therefore, we first chose to
classify partially found tables as true positives. Therefore, such an error is only penal-
ized by affecting the cell recall figure. The numbers of fully and partially found table
areas were counted separately. A common error that occurred with many table areas
was that all the data cells were found, but the heading cells, which were located some
distance from the table body, were not. For data extraction purposes, such a result
would be adequate, as it would still be possible to extract all the data from the table.
We therefore introduced a further classification, data cells found. A similar situation
occurred with the classification merged into surroundings, where tables were typi-
cally merged with neighbouring lines or text above or below, but it was still possible
to extract all the data from the table.

The complete list of classifications that we used is shown in Table As well as
split data cells, we also chose to reclassify certain other classifications for our second
set of totals as false positives to correspond to a more strict interpretation of the data
items having been correctly retrieved and better reflect the usability of the result.

4.4.3 Ground truthing issues

The problems inherent in ground truthing tabular datasets are well known and have
been described in detail in [Hu et al.|2001b]]. In this section, we describe the difficulties
encountered in ground truthing the PDF-TREX dataset by the following examples:

e table headings not properly aligned with the columns containing the data
(Fig.[.8): in this figure, several figures are misaligned with their headings. For
example, it is not immediately clear whether the figure 118.011 belongs to the
Valore iniziale column, or belongs to its own column. On closer examination, it

73

Chapter 4. Table recognition

VARIAZIONI DELL'ESERCIZIO
Storno f.do
VOCE DI BILANCIO Valore iniziale Acquisizioni ajien.e stralci Rivalut. Amm.econ. amm. Totale
Fabbricati civili 62911 62.911
Terreni e fabbricatiindustriali 618.277 618.277
Impianti e macchine 118.011 197 118.208
Macch. d'ufficio elettroniche 2.535 2.535

Figure 4.8: Example of a table with unclearly aligned columns

2004 2003 variazioni
Disponibilita liquide 88.828 16.877 +71.951
Sono relative a:
- cassa contante 14.951 274
- depositi bancari 73.877 16.603
Totale 88.828 16.877

2004 2003 variazioni

Ratei e risconti attivi 22.794 22.781 +13

Figure 4.9: Example of a table split by intermediate headings

Previsioni di inflazione nell’area dell’euro dei principali
organismi internazionali (1)

2007 2008
FMI OCSE CE FMI OCSE CE
(set. 2006) (dic. 2006) (feb. 2007) (set. 2006) (dic. 2006) (nov. 2006)
ltalia 2,1 1,9 1,9 . 2,0 1,9
Francia 1,9 1,4 1,5 . 1,6 1,9
Germania 2,6 1,9 1,7 . 1,0 1,2
Spagna 3,4 2,7 2,5 . 3,2 2,7
Area euro 2,4 1,9 1,8 . 1,8 1,9

Fonte: FMI, Ocse e CE.
(1) Previsioni effettuate nel mese indicato fra parentesi.

Figure 4.10: Example of a table with spanning column headings

74

4.4. Experimental evaluation

appears that this figure was mistakenly right aligned. Similarly, the erroneous
left alignment of the column heading Totale causes confusion;

tables being split by intermediate headings (Fig. [£.9): are these separate ta-
bles, or do these subtables all belong to one single table? If the table was not
interrupted by paragraph text, it was interpreted as a single table, which also
corresponds to the interpretation used by Ruffolo and Oro. However, in this
case, the following problem arises:

spanning column headings in non-ruled tables (Fig.[4.10): here, one often can-
not tell from the layout alone how many columns are spanned by the text. Al-
though the text may only be two columns wide, it could be seen to logically span
all data cells or even the entire width of the table. Even with domain-specific
knowledge, this can present an ambiguous situation;

spanning row headings in non-ruled tables (Fig. [4.11): here, the layout of the
table might suggest that the heading of a group of rows only belongs to the top
row of the group. But logically, the heading applies to the row(s) underneath
too. In the example, the year and months apply equally to the rows following
them;

other tabulated data with leading dots (Fig. £.12): in this example, the page
contains two ruled tables and additional tabulated data inbetween these tables,
which is presented using leading dots. This special type of formatting is usually
reserved for special use-cases such as tables of contents and indices in books.
Because the data presented is of a tabular nature, we did consider this to be a
table in our ground truth, in contrast to Ruffolo and Oro. However, because
this was one formatting convention we did not consider when designing our
algorithm, this table was not detected at all by our system;

one line wrapped from previous table (Fig.[4.13): here, is appears that a single
row (the “total” row) of a table on the previous page was wrapped over to the
current page. Because we define tables as having a minimum dimension of
2x2, we did not class this “orphan row” as a table. This also corresponds to the
decision made by Ruffolo and Oro.

We found that many of the above problems, such as misaligned columns and orphan

rows, occurred due to poor, unprofessional typesetting of the documents in question.

Some of these documents even proved troublesome for a human reader to under-

stand, who could at least use his domain-specific knowledge to help the understand-
ing process when the underlying logical structure cannot be determined from the

75

Chapter 4. Table recognition

2000 — GEN. ...t 393 13.153 2.506 707 139 16.898
(203) (6.793) (1.294) (365) (72) (8.727)

feb. .. 341 12.286 2.957 753 124 16.460

(176) (6.345) (1.527) (389) (64) (8.501)

ML e 331 11.294 2.689 889 196 15.399

(171) (5.833) (1.389) (459) (101) (7.953)

AL 447 10.353 2.169 815 167 13.947

(231) (5.347) (1.120) (421) (86) (7.203)

MAG. e 416 11.447 2.446 1.125 147 15.620

(215) (5.912) (1.263) (581) (76) (8.067)

Figure 4.11: Example of spanning rows in an unruled table

AUUlLZIVLIAIC ICglUllalC llpUl 147,V v 147,U v
Erario c¢/rit. Amm.ri 1.215,03 0 1.215,03 0
Totale 21.210,41 1.458,12 19.284,63 3.383,90

In merito alle imposte sul reddito dovute dalla societa si precisa quanto segue:

Imposta Ires

Imposta IRES dovuta..........ccoceoiiiinieiniiincncncncececne 8.014,00
Erario ¢/r.a. SUDILE........ccooviiuiitieeicieeeceteeeeeeeee e 9,18
Erario ¢/ 1.a. PrOVV.....cccocoiiiiniinienieeneeneeneenee et 1.503,72

Acconti Ires versati anno 2004 11.193,93
Credito Ires anno 2004 4.693,00

Figure 4.12: Example of tabular data laid out using leading dots

COOPERATIVA SOCIALE XXXX XXXX A R.L.

[TOTALE | 118.088,00] 5.448,00] 24.370,00] 99.166,00]
B.2 IMMOBILIZZAZIONI MATERIALI

L'ammortamento delle immobilizzazioni materiali, la cui utilizzazione & limitata nel tempo, & stato operato in
conformita al presente piano prestabilito:

Figure 4.13: Top of a page containing a one-line table, an “orphan row” wrapped from
the previous page

76

4.4. Experimental evaluation

layout alone (or, worse still, when the visual cues suggest a different logical structure
to the correct one).

When we originally designed our system, we made two assumptions: Firstly, the
input documents are correctly typeset and adhere to common layout conventions.
Secondly, the logical structure of the data can be fully inferred from its layout. We
found the PDF-TREX system to operate in a similar way, as it also encountered prob-
lems with the same documents.

We therefore pose the following questions for consideration regarding the dataset:

e Should documents containing obvious errors in their typesetting or layout (such
as misaligned columns) be eliminated from the dataset?

e How do we deal with documents that have more than one correct interpretation
of the ground truth?

e Perhaps a subset of documents could be defined, which are not reliant on
domain-specific reasoning to be understood, and could be used to test systems
which rely purely on the document’s geometric structure. This could ensure
less “noise” in the test results.

4.4.4 Aggregation of results

In common with a previous publication [Yildiz et al.[2005]], the results of the PDF-
TREX system were given using separate precision and recall values for tables and
cells. Here, the authors used a document-based approach: they first calculated the
average table area and cell recall and precision for each document, and averaged
these figures throughout the complete dataset. It is, however, not possible to calculate
precision values for documents where no tables or cells were detected at all. We
therefore decided to skip the step of calculating the averages for each document and
create our totals by averaging the total numbers of detected cells directly over the
complete dataset. With this method, documents containing more information (more
table areas/cells) are also given more weighting in the final result.

A number of other approaches have also been proposed in the literature for ag-
gregating the results of table structure recognition algorithms on different levels of
granularity. [Kieninger and Dengel 2001, 2005] propose a hierarchical model for rep-
resenting the recognition result and the ground truth and redefine table recall and table
precision based on their constituent objects. Thus, single values for recall and precision
are returned. Because a strict hierarchy is used, only columns or rows can represented;

77

Chapter 4. Table recognition

the authors choose to represent columns as this better represents how their algorithm
works.

A potential issue arises in the bottom level of the hierarchy, which is stated to be
the word level. As the precise granularity or bottom-level segmentation may differ
across different systems, difficulties could arise when comparing different systems to
each other.

[Hu et al|2002, 2001a] use a directed acyclic graph structure to represent the recog-
nition result and ground truth. This structure can be used to represent both rows and
columns simultaneously. Because of the complexity of the graph isomorphism prob-
lem, the two graphs are compared by a sequence of random graph probing operations,
which need to be carefully defined according to the measuring criteria. Although
such an approach is well suited for automatic tuning of algorithm parameters for a
particular application, it is less suitable for comparing different systems to each other,
not least because of the random element of this approach.

A further noteworthy approach is that of [Cesarini et al[2002], who provide a for-
mula for the Table Location Index, which combines correctly located, split and merged
tables into a single score, and is used for automatic optimization of their algorithm.
However, this approach does not deal with table cells, but only with table areas.

4.4.5 Numerical results of both systems

The precision and recall measures of both systems are shown in Table

4.4.6 Discussion

Broadly speaking, the results show that whereas the PDF-TREX system achieves bet-
ter cell recall, our system achieves better table area recognition results and better pre-
cision (i.e. fewer false positives) overall. The largest differences can be observed in the
precision of table areas and the recall of table cells. After redefining certain cell classi-
fications as false positives, a significant decrease was noticed in the numerical results
of the PDF-TREX system. This is because the new definitions give a higher penalty to
errors which would likely hinder data extraction. Excluding blank cells led to higher
numerical results for precision and recall, and gave the PDF-TREX system a slight
advantage.

During testing, it became clear that many documents which caused problems for
our system also caused problems for PDF-TREX and vice versa, which suggests that
both systems work in a similar way. It is believed that a small amount of fine-tuning

78

4.4. Experimental evaluation

Table areas before reclassification:

Recall | Precision | F-meas.
Our system | 93.0% 78.8% 85.3%
PDF-TREX | 87.5% 61.5% 72.3%

Table cells before reclassification:

Including blank cells Excluding blank cells
Recall | Precision | F-meas. | Recall | Precision | F-meas.
Our system | 87.3% 86.7% 87.0% | 88.3% 96.1% 92.0%
PDF-TREX | 96.5% 80.7% 87.9% | 97.2% 94.2% 95.7%

Table areas after reclassification:

Recall | Precision | F-meas.
Our system | 76.9% 66.7% 71.4%
PDE-TREX | 67.7% 47.6% 55.9%

Table cells after reclassification:

Including blank cells Excluding blank cells
Recall | Precision | F-meas. | Recall | Precision | F-meas.
Our system | 87.3% 86.7% 87.0% 86.2% 96.0% 90.8%
PDE-TREX | 93.5% 78.1% 85.1% 94.1% 91.0% 92.5%

Table 4.2: Precision and recall results of both systems for table areas and table cells

of both algorithms, for example by adjusting thresholds or by trading off precision
for recall, could lead to significantly better numerical results. The higher table cell
recall of PDF-TREX could partly be attributed to the fact that several large tables were
not detected at all by our system; these same tables were detected by PDE-TREX but
split into several individual tables, which explains its significantly worse table area
precision.

The significant drop in table area precision of PDF-TREX after reclassifying
merged tables as false positives could be explained by one particular document in
the dataset, which contained 12 tables on one page. Whereas these tables were de-
tected correctly by our system, they were erroneously merged together into a single
table by PDF-TREX. The fact that our results were not generated by averaging the re-
sults for each document, but were averaged directly over the complete dataset, means
that this error was given a much larger weighting in the final result.

Both systems showed a significant weakness in the detection of tables in sparse
layouts. In our case, this was because the table searching procedure finds tables only
by merging adjacent candidate columns to the left and right of the table. In a sparse
layout, these candidate columns are sometimes not found in full, but broken up. This
problem could be solved in one of two ways: either by a threshold-adjustment heuris-

79

Chapter 4. Table recognition

tic based on a measure of the sparseness of the page, or by an additional vertical
merging procedure.

Furthermore, a proportion of these documents also contained significant typeset-
ting errors, which made logical structure detection difficult even for a human reader,
who at least has the ability to use domain-specific knowledge. This class of docu-
ments was not considered in the initial design of our approach.

Finally, although every effort was made to ensure a fair test with the data, ulti-
mately the PDF-TREX system had an inherent advantage, as its developers had pro-
vided the test dataset and therefore had more opportunity to develop and test their
system on it. In an ideal scenario, these tests would be performed on an indepen-
dently generated dataset, which none of the developers have seen beforehand, in a
similar way to the ICDAR Page Segmentation Competition [Antonacopoulos et al.[2009].

4.5 Conclusion

In this chapter, we have presented an algorithm for table detection and table structure
recognition from PDF files, which achieves good results on a wide variety of docu-
ments, and can be used as an input filter for the Lixto Visual Wrapper (see Chapter
to wrap data from tabular documents. It was compared to another, newer system in
the literature and was found to achieve comparable results, but with increased preci-
sion. Further improvements to the algorithm could improve the detection of tables in
sparse layouts.

We have also addressed the significant issue of evaluating systems for table de-
tection and structure recognition. The use of precision and recall measures from the
information retrieval field to model errors in table structure recognition, as in [Yildiz
et al. 2005; Ruffolo and Oro|2009], can lead to many ambiguities. It is hoped that
the extensive discussion in Section .4 will lead to a more consistent interpretation of
these measures in the future, enabling the results of competing systems to be com-
pared directly.

As already mentioned in Section the detection of structures on a page relies
on using knowledge at multiple granular levels of the page simultaneously. Although
the search procedure operates only at the table column level, the use of the validation
procedure in our algorithm (see Section checks the table’s objects at several
granular levels to deem whether a valid table has been found. We believe that a more
precise hierarchical model of the composition of a table, coupled with the ability to
perform specific operations to correct common detection errors, such as in [Wang
2002], could lead to further performance benefits.

80

4.5. Conclusion

A further limitation of this approach is that it does not have the ability to correct
errors made in the previous processing stage, page segmentation, nor can any un-
certainties in the table detection process be conveyed to the following stages, such
as wrapping directly on the tabular structure. This problem is discussed in detail in
Section 7.2} where suggestions for future work are given.

81

Chapter 5

Wrapping using the Lixto Visual
Developer

The Lixto Visual Developer, or VD, enables wrappers for HTML pages to be generated
in a visual and interactive manner. The user interface uses the Mozilla engine to
display a preview of the page, with which the user can interact. Wrappers are defined
by hierarchically structured patterns to select data on the page, which can either be
made available to the next hierarchical level or written directly to the output XML
file.

Generally, wrapping tables in HTML documents is a relatively simple approach.
After selecting the table(s) in a root pattern, first the rows (<tr>) are wrapped in a
subpattern and then the individual cells (<td>) in the pattern below. Depending on
the desired result, the user can choose to select either all or only particular columns
from the table. Our conversion process does not distinguish between table heading
and table data elements and all cells are represented using <td> elements. A screen-
shot of the Lixto VD in action is shown in Figure In the pattern being shown, the
rows of a table are being selected.

Our conversion approach is implemented by a plugin, which generates an
XHTML file that is used as input to the Lixto VD. The default behaviour is to de-
tect tables on the page, and include all text blocks as well as tables that have been
found. Text blocks are represented as <h1l> or <p> elements, depending upon their
size, and tables are represented as HTML <table> elements.

In order to improve the presentation of the document, a number of heuristics have
been employed to detect headings on the page and attempt to find the correct reading
order of the blocks. As the focus of the system is on extracting data from tables,
these heuristics are based on simple spatial relations, and may fail on more complex

83

Chapter 5. Wrapping using the Lixto Visual Developer

layouts. Using parameters, the user can choose to hide all non-<table> objects and
also has the option to force treatment of entire pages as tables. This option is useful
in cases where the table detection algorithm produces split tables or fails to detect the
table at all.

5.1 Case study example: Statistik Austria

The conversion approach to wrapping produces successful results for tables with a
clear and consistent visual structure, which are suited to automatic detection and
structure detection algorithms. As an example, the Statistik Austria websiteﬂ contains
large amounts of statistical data in PDF, some (but not all) of which is available in
other formats, such as HTML. To demonstrate the conversion-based wrapping ap-
proach, a representative 18-page document [Statistik Austria|2009 (Web)|] containing
669 data records in a table spanning over all these pages was chosen. Figure[5.2]shows
a sample of the data in this document.

Our table detection algorithm was not found to work perfectly on this document.
Only the data cells, and no heading cells were detected. Due to text in the final two
columns being very narrowly spaced, these two columns were merged into one single
column. However, it was possible to cope with both errors in the Lixto VD, as these
errors occurred uniformly throughout the entire document.

As we were only interested in extracting the data cells of the document, it was
actually beneficial that the heading cells were not detected. Otherwise, additional
conditions would have been necessary to exclude the heading cells. As the data in
the merged final two columns was separated by a space, a regular expression was
used to extract the data belonging to each respective cell. Even if this error had not
consistently occurred throughout the document (but only from time to time), it would
still have been possible to define the wrapper to deal with both situations and produce
correct output.

A number of issues also arose in ground truthing the original document. The
first column actually contained two items of data, a code and a description
(Klassennummer and Kurzbezeichnung), which were also extracted separately using
regular expressions. Furthermore, after analysing the column headings it was found
that they also did not have a flat structure: the headings Beschiftigte im Jahresdurch-
schnitt and Waren- und Dienstleistungskaufe actually apply not only to their partic-
ular column but also to the following column. The wrapper design was modified to
reflect this hierarchical structure.

LStatistik Austria, http://www.statistik.at

84

5.2. Step-by-step wrapper creation

E Lixto - StatistikAustria/statistik-austria. lixvw - Lixto Visual Developer 6.0.14
Fie Edt Run Recording Window Hep
P g - t5- 0~ B [o |
5. Navigatar 53 = O || statistk-austria.iovw 32] output.ixmed [¥] single_output.xml = O/ % poMview 2 W =0
ER~ = oy ;
o I le:/z: ftamleistungs-_und_strukturstatistic_2007_-_hauptergebnisse_037117.pdf ~ @ Jnitmi[1]/body[1] table]
-1 LixtoExamples e % & © @ ‘ 3 WibodvLljrl2]
B StatistkAustria ~
5 Page 1
- statistk-austria
. - [bod -
A ot 'INSGESAMT 294.099]2.611.283 [2.357.784 93.759.729 [657.051.122[613.398." (B oy -
[%) pe-.xml ' T stext
[X] single_output.xml 1C Bergbau und Gewinnung von 345 6157 5040 126 821 2166107 | 207303 [har1
[X] .project !Steinen u Erden - T - T - - S22 ’é:tEXl
8] output.iixmod ’ - [table[1]
G Statstcaustraiow :]0 Kohlenbergbau, Torfgewinmng | 6 G G G G G T stext
103 Torfgewinnung und -veredung | 6 G G G G G & [E] thody
L - [E v]1
11030 Torfgewinnung und 6 G G G G T stext
Iveredhing
T
oz =
o outine 1 2 7 7 511411 Erdol- wnd Erdgashergban 1015|1012 |94095 |1014425 978220 & w1
=% Action Sequence Al L T ext
&-Zg7 [1] Data Extractor 1 . . @
Hoeb! 111 Erdel wid Erdgasbergban |3 1001|1001 93710 | 1.006821 |970.891 @ B
£ T =text
 Fiter I [EwE «
E-E item 11110 Erdél- und Erdgasbergbau |3 1.001 1.001 93.710 1.006.921 970.991
7 Fiter 3 ¥/ ||| Mame Value
=€ firstcol < | >
F Filier [ronser
B-i€! Kassemnum |
S Eiter = Properties 2 _[2ll Problems | Ef Report | M rowser Console | @ Cockies (]8T = B3 nf =2 =8
(=8 kurzhezeick -
Z Fiter ¥ Filter Found instances:
(=& Izsteol Jecti selected node: - o] Result: an
7 e Selection t Lt ot i
S-/€ bruttoinves || Content Node atributes: [ame P Context: a0
T Fiter Range Invisible values:
=€ code Output Value
&€ unternehmen
T Fiter
=18} beschaeftigte_i
P Filter b
&l inspesamt ¥ A4
| > < *
0* El

Figure 5.1: Interactive wrapper creation using the Lixto Visual Developer

In this way, it is possible to wrap tables from PDF documents which have a clear
structure and consistent formatting using the conversion-based approach. If not all
cells are required, of course only the required data could be selected. The next sub-
section details the steps that were necessary in creating this wrapper.

5.2 Step-by-step wrapper creation

The following interaction steps were necessary to create the wrapper described in
Section 5.1}

1. Create a new URL action to open (and import) the desired PDF file into the Lixto
VW. Autotable mode must be selected to enable table detection

2. Create a new data extractor

3. First, create a new pattern to extract all the relevant tables:

85

Chapter 5. Wrapping using the Lixto Visual Developer

; i der Leists und istik 2007
Beschattigte i Waren- und Bruttowert-
Kiassen im Porsonal- | Erlése und Umsatz- | Produktions- | Dienstieistungs-| dar. zum Brutto-
Nummer und Kurzbezeichnung unter- | johresdurch- | Garunter aufwand Ertrége erlose wert Kaufe ! Wioderverkauf | SOPUS2U | e ciionen | Code
(ONACE 2003) nehmen | sehnitt 2007 | ¥t | 11000 EUR | in 1.000 EUR* | in 1.000 EUR® | in1.000 EUR* | insgesamt | in1.000 EUR* :‘a‘k‘gé:;";'j;, in 1.000 EUR*
insgesamt in 1.000 EUR* N
INSGESAMT 294.099 2611203 2357.784 93.759.729 657.051.122 613.508.729 380.324.893 415.530.018 205.286.689 162.797.470 40.299.429
C Bergbau und Gewinnung von Steinen u.Erden 345 6.157 5.949 326821 2166102 2075938 1.958.522 1.200.605 173.404 867.524 433.773C
10 Kohlenbergbau, Torfgewinnung 6 G G G G G G] G G G C10
103 Torfgewinnung und -verediung 6 G G G G G G G G G G C103
1030 Torfgewinnung und -verediung 6 G G G G G G G G G G C1030
11 Erdél- und Erdgasbergbau 7 1015 1.012 94.095 1.014.425 978.220 882.691 468.033 109.221 472639 279.461 C11
111 Erddl- und Erdgasbergbau 3 1.001 1.001 93710 1.006.921 970991 875.737 464.079 109.147 469.829 278.006 C111
1110 Erddl- und Erdgasbergbau 3 1.001 1.001 93710 1.006.921 970991 875.737 464.079 109.147 460820 278006 C1110
112 Erbr.v.Dienstl.f.d Erdol-u. Erdgasbergb. 4 14 1 385 7.504 7.229 6.954 3.954 74 2810 1.455 C112
1120 Erbr.v.Dienstl.f.Erddl- u.Erdgasbergb. 4 14 1 385 7.504 7.229 6.954 3.954 74 2810 1.455 C1120
13 Erzbergbau 2 G G G G G G G G G G C13
131 Eisenerzbergbau 2 G G G G G G G G G G C131
1310 Eisenerzbergbau 2 G G G G G G G G G G C1310
14 Gew.v.Steinen u.Erden, sonstiger Bergbau 330 4.968 4767 222867 1120515 1.070.482 1.045.983 713.731 64.167 384893 151.863 C14
141 Gewinnung von Natursteinen 48 578 550 23.078 88.804 79.721 80.100 44.430 2.049 36.484 12.822 C141
1411 Gewinnung v.Naturwerksteinen 40 499 475 19.589 67.695 65.676 65.125 36.193 1.995 29.875 11.343 C1411
1412 Gew.v.Kalk, Dolomit, Gips u. Anhydrit 8 79 75 3.489 21.109 14.045 14.975 8.237 54 6.609 1.479 C1412
142 Gewinnung von Kies, Sand, Ton u. Kaolin 267 3758 3589 162.524 876.331 843.187 816,659 561.546 50.606 296.291 95.919 C142
1421 Gewinnung v.Kies und Sand 262 3686 3523 160.288 868.238 835.277 810.480 557.103 48.722 292.725 95.320 C1421

Figure 5.2: An example of the tabular data in the Statistik Austria test document

e
a5 - = @ @& @‘fl\aH,’hﬂme,’tam[s\ngle_output,xml -

Most Visited ¥ §Getting Started [51] Latest Headlines ¥

(@) filez/ /home/tam/single_output.xml CH

—<waren-_und_dienstleistungskaeufe>
<insgesamt>G</insgesamt>
<darunter_zum_wiederverkauf>G</darunter_zum_wiederverkauf>
</waren-_und_dienstleistungskaeufe>
<bruttowertschoepfung_zu_faktorkosten>G</bruttowertschoepfung_zu_faktorkosten>
<fitem>
- <item>
<klassennummer>11</klassennummer>
<kurzbezeichnung>Erdél- und Erdgasbergbau</kurzbezeichnung>
<bruttoinvestitionen>279.461</bruttoinvestitionen>
<code>C11</code>
<unternehmen>7</unternehmen>
- <beschaeftigte_im_jahresdurchschnitt>
<insgesamt>7</insgesamt>
<darunter_unselbstaendig>1.015</darunter_unselbstaendig>
</beschaeftigte_im_jahresdurchschnitt>
<personalaufwand>94.095</personalaufwand>
<erloese_und_ertraege>1.014.425</erloese_und_ertraege>
<umsatzerloese>978.220</umsatzerloese>
<produktionswert>882.691</produktionswert>
—<waren-_und_dienstleistungskaeufe>
<insgesamt>468.033</insgesamt>
<darunter_zum_wiederverkauf>109.221</darunter_zum_wiederverkauf>
</waren-_und_dienstleistungskaeufe>
<bruttowertschoepfung_zu_faktorkosten>472.639</bruttowertschoepfung_zu_faktorkosten>
<fitem>
- <item>
<klassennummer>111</klassennummer>
<kurzbezeichnung>Erdél- und Erdgasbergbau</kurzbezeichnung>
<bruttoinvestitionen>278.006</bruttoinvestitionen>
<code>C111</code>
<unternehmen>3</unternehmen>
— <beschaeftigte_im_jahresdurchschnitt>
Done

Figure 5.3: The resulting XML output from the Lixto Visual Developer

86

5.3. Discussion

5.3

(a) Select the pattern’s filter
(b) Click anywhere on the table to select. A table cell should be selected

(c) Click the up arrow, which removes the last element of the XPath expres-
sion. Repeat until the entire table is selected

(d) Under occurrence type, select multiple

(e) Name this pattern table

. Follow step 3 to create a pattern to select each record (row) in the table, as a

child pattern of the table pattern. Name this pattern item

For each desired column of the table, create a pattern as a child of the item
pattern. This time, set the occurrence type to single

If any hierarchical groupings are required, create a “dummy” pattern for these
groupings and leave the filter blank

. To split a column that has been merged, create two sub-patterns. For each of

these sub-patterns:

(a) Select the pattern’s filter
(b) Change the type to text and select regexp

(c) Enter the desired regular expression

For each of the leaf patterns, as well as any desired groupings, check the box
headed Write to output

. The wrapper is now ready to be executed

Discussion

In this chapter we have shown how the methods developed in Chapters [3H44] can
be used to wrap tabular data with the Lixto Visual Developer. Apart from the fi-
nal record, which was split up into two records due to a layout error in the original

document, the wrapper was able to extract the remaining 668 records correctly and
completely.

An obvious drawback of the Lixto import function is that the resulting HTML
document does not visually resemble the PDF original. As the visual coordinates of

each detected text block are known, it would be possible to develop a “page view” in

the Lixto VD, which would allow the user to interact directly on a bitmap rendition

87

Chapter 5. Wrapping using the Lixto Visual Developer

of the original document. The detected tables and other structures could then be
shown directly on this rendition. This could result in an improvement to the usability
of the system. However, care must be taken that it does not confuse the user, as the
underlying HTML structure, which does not necessarily represent the structure of the
document image, would then be somewhat hidden. Using this wrapping approach, it
would not be possible to completely do without the HTML view, particularly in cases
where detection errors such as merged columns result.

Ultimately, there are a number of drawbacks of wrapping data from PDF files
using HTML as an intermediate format. Not only is it unintuitive for the user to
work with, it also does not allow us to express all the relationships we might need to
locate wrapping instances. The user is limited to using elements of the rediscovered
logical structure, such as headings and tables; explicit geometric relations between
objects are unavailable. Furthermore, it is crucial that the document understanding
process detects these structures and converts them into HTML correctly. Although
the example with the Statistik Austria document has shown that certain minor errors
can be coped with, document understanding is inherently an inaccurate process. If a
table is only partly detected or not detected at all, as can happen with more complex
layouts, its data cannot be extracted.

The next chapter presents the graph-based approach to wrapping, which enables
wrappers to be defined more directly on the visual structure of a PDF document. This
approach is designed to address these limitations of the conversion approach to wrap-

ping.

88

Chapter 6

The graph-based approach to
wrapping

This chapter describes a novel approach to user-guided data extraction, which is
based on the adjacency graph representation described in Section The idea of
using graph-based techniques for wrapping was first proposed in our poster paper
[Hassan and Baumgartner|2006] and a prototype system was published in [Hassan
2009c,b]]. This chapter includes content from all of these publications, as well as sev-
eral yet unpublished improvements to the algorithm.

6.1 Background

Up to now, the work described in this thesis was carried out with one specific goal
in mind: to recognize structures such as tables in such a way as to enable a good
conversion from PDF into HTML, in order to enable data to be extracted using a
tool such as the Lixto Visual Wrapper. Although a large proportion of documents can
be wrapped this way, this approach has some obvious drawbacks, as explained in
Chapter 5}

e it is unintuitive for the user to work with HTML as an intermediate format as
its appearance does not closely resemble that of the original document;

e HTML does not allow us to express all the relationships we might need to locate
wrapping instances;

e it is crucial that the document understanding process detects the desired struc-
tures and converts them to HTML correctly. As document understanding is
inherently an inaccurate process, this approach lacks robustness.

89

Chapter 6. The graph-based approach to wrapping

We therefore decided to experiment with a more direct way to wrap data from the
document. Inspired by the graph-based representation in Section we decided
to use this structure as a basis for the investigation of graph-matching techniques to
locate wrapping instances. This approach addresses the concerns above, specifically:

e our graph-based representation very closely resembles the physical structure of
the page and is much more intuitive for the user to work with (see Section|6.4.1));

e our adjacency graph representation can be extended by the addition of logical
and semantic relationships, enabling our wrapper generation language to be as
expressive as necessary;

e most wrapping applications can be performed solely by using adjacency or
part adjacency/part logical relationships and are not reliant on complete struc-
tures, such as tables, being correctly detected. The graph-based approach has
a much higher chance of success in cases where the document understanding
algorithms do not perform correctly. Furthermore, it enables a wider range of
documents, such as the example in Figure [6.1) with irregular structures, to be
wrapped.

A closer investigation of the wrapper generation process has enabled us to identify
the three main data structures within a PDF document that could be used to locate
instances of data to be wrapped:

e geometric structure (explicit in the coordinates of each object)
e logical structure (inferred from the layout)

e content and content attributes (the text itself, as well as font, style, size, etc.)

Whilst our HTML conversion allows us to use the content and logical structure to
identify wrapping instances, it does not give us direct access to the document’s geo-
metric structure. The graph-based approach described in this chapter allows a combi-
nation of all three of these structures to be used, essentially shifting some of the bur-
den of the document understanding process to the user, which compensates for the
inherent inaccuracies and limitations of document understanding. The examples in
this chapter only use the geometric structure and content attributes for wrapper defi-
nition; the relatively straightforward extension to logical relationships is proposed as
further work.

90

6.2. Technical implementation

6.2 Technical implementation

This section describes how our prototype system for wrapper generation using graph
matching was implemented. Section describes how the graph structure is gen-
erated from a page of a document. Section introduces the problem of graph
matching and gives a brief overview of relevant literature in the field. The remainder
of the section presents our algorithm for locating wrapping instances, which is based
on the Ullmann algorithm [Ullmann1976].

6.2.1 Creation of graph structures

In Section[3.1.3|we developed the adjacency graph representation of a document, which
represents all segments at a given granularity as nodes in a graph. Two nodes are
joined with an edge if their respective segments are direct neighbours of each other.
These edges are annotated with their respective directions: north, south, east or west.
The precise definition of direct neighbourhood and the algorithm which determines
the direction label are given in Section As two of the directions are direct op-
posites of the other two, we choose to only explicitly represent the south and east
directions.

When the user interactively selects the desired example instance on the graphical
user interface (see Section 6.4.1), the underlying sub-graph of the document graph is
found. The process is as follows:

e all the nodes whose centre co-ordinate (Xcen, Ycen) intersects the marquee box
are found and form the nodes of the example graph;

e all the edges in the document graph which join any two nodes, both of which
are in the example graph, are added to the example graph.

The example graph is then furnished with the respective attributes of its nodes and
edges and is known as an attributed relational graph (ARG). For horizontal edges, the
edge length is equal to the shortest horizontal physical distance between the nodes that
it joins. For vertical edges, the distance between the respective baselines is used.

This graph is then shown to the user in the right-hand panel of the user interface.
The user can now make changes, such as adding or removing nodes or conditions.
For the remainder of this chapter, we will use the terms document graph for the ARG
of the document and example graph for the ARG of the example instance, which is a
subgraph of the document graph in which extra wrapping conditions may be defined.
See Figure 6.8/ for a screenshot of the user interface. Essentially, the example graph
defines the wrapper.

91

Chapter 6. The graph-based approach to wrapping

XV X - XN XX - X = XN XXX sl il -

PRUFBERICHT
XXRHKAKHX KHXKX XHXXXK XX
XXOKHA XK HXXXXKHKX
XXX XX XX

XXKKK HXHKHXXHKKK XOOCKXXKX

Datum Unser Sachbearbeiter Abteilung Telefon Telefax Seite.
04.12 .2005 XXXXXEXEXXXXXXXXXX XEXXX XAXXXX /XX -XXXX EXXXX-XX-XXXXX 1
SAMMELAUSSCHUSS Lieferantennr. Telefax
KXXXXX XXX XXX /XXXX-XX
Teilenummer Benennung Beanstandete
Menge

0 000 007 asexosren

TE-MIN: 90 KOST:1733
FEHLER : Filr den entstandenen Aufwand werden Thnen die aufge-
flthrten TE-Minuten berechnet. (80 TE-Min. = 73,50 EUR)
ENTSCHEIDUNG : Bearbeitungsaufwand
6872134 /04 wureceraensTossoasmprervo LR
TC716M TE-MIN: 30 KOST:4135
FEHLER 1X Passt nicht
AVS ID: 1903817112
Falscher Barcodeaufkleber 619137134 vorhanden >
TE: 30
FEHLERDATUM ¢ 719,11 .2005
ENTSCHE IDUNG : Rlcklieferung oder Gefahrgut
6872137 /02 wstossomensren e wiinan) 2 * B
TC3708 TE-MIN: Lk KOST:4130
FEHLER 3 3X Gewindefehler
AVS ID: 1503817134
Gewinde XX2X1,5 beschaedigt (Anlieferzustand) TE: 15 >
Die Mutter konnte von Hand nicht aufgeschraubt werden.
FEHLERDATUM + 28.10.2005
ENTSCHEIDUNG : Ricklieferung oder Gefahrgut b
6872139 /02 wsrossonemeren 1 sere 1%
FA90S TE-MIN: 20 KOST:4146
FEHLER : 1X Beschadigt
AVS ID: 1503817138
Druckanschlagtopf gerissen >
TE: 20
FEHLERDATUM ¢ 02.11.2005
ENTSCHEIDUNG : Ricklieferung oder Gefahrgut J

*= PPM-RELEVANT

'
]
'

Figure 6.1: Example of a document containing wrappable information with an irreg-
ular layout. The brackets represent the individual records

92

6.2. Technical implementation

6.2.2 Introduction to graph matching

In recent years, the use of graph matching techniques in pattern recognition appli-
cations has become more widespread. In particular, graph matching has found sev-
eral uses in computer vision applications, e.g. [Li and Lee|[2000; Belongie and Malik
2000]. In document processing, graph matching has also been used for optical charac-
ter recognition [Lee and Liu|[1999; Suganthan and Yan|[1998|] and symbol recognition
[Lladés et al.|2001; Changhua et al[2000]. A related technique, graph partitioning, has
also been applied to clustering documents for information retrieval [Dhillon|2001; Za-
mir and Etzioni(1998]]. We believe that the method presented in this chapter is the first
application of graph matching techniques to data extraction from documents on the
physical level. The term graph matching is indeed very broad and imprecise, encom-
passing a number of techniques for the structural comparison of (sub)graphs. Conte
et al. describe graph matching as:

... the process of finding a correspondence between the nodes and the
edges of two graphs that satisfies some (more or less stringent) constraints
ensuring that similar substructures in one graph are mapped to similar
substructures in the other. ([Conte et al.[2004], p. 2 [266])

The most stringent form of graph matching is graph isomorphism. This form of match-
ing searches for a correspondence between each node in both graphs. These corre-
spondences must be one-to-one. Furthermore, the mapping must be edge preserving,
i.e. if two nodes in the first graph are linked by an edge, the corresponding nodes in
the second graph must be linked by an edge as well.

It is clear that such a matching procedure is not very useful for our application
as our example graph, for all practical purposes, must be smaller than the document
graph against which it will be matched. Thus, we require an algorithm for subgraph
isomorphism which finds not one, but all possible matching subgraphs in our docu-
ment. Only this way can we find repeating data sets such as table rows, etc.

Furthermore, since we are working with attributed relational graphs, the edges
in our graphs also convey significant meaning. Therefore, it is not enough that the
matching be edge preserving; the relationship represented by the edge in the corre-
sponding document graph must also somehow match the relationship expressed by
the edge in the example graph. We refer to this type of matching as attributed match-
ing. It is also worth noting that this necessitates an algorithm suitable for matching
directed graphs.

Finally, since we are matching datasets where the structure can differ slightly, our
procedure needs to allow for the fact that the underlying graph structure will not

93

Chapter 6. The graph-based approach to wrapping

0 000 007 ospwcamen

TE-MIN: 30 KOST:1733
FEHLER : Fir den entgtandenen Aufwand werden Ihnen die aufge-
fihrten TE-Minuten berechnet. (20 TE-Min. = 73,50 EUR]
ENTSCHEIDUNE : Bearbeitungsaufwand

6872134 /04 wureensensmossmameesayn
TCT71lEM TE-MIN: 30 KOET:4135

FEHLER : 1¥ Passt nicht
ays ID: 1903817112
Falscher Barcocdeaufkleber 619137134 wvorhanden
TE :

FEHLERDATUM : 19.11.2005

ENTSCHEIDUNS @ Ricklieferung cder Gefahrgut

Figure 6.2: Example of error tolerance: in the two records shown above, the row
headed Fehlerdatum is missing from the first record.

6872134/04L*| FEDERBEIN-STOSSDAEMPFER | [1:3]

TC716M KOST:4135

1X Passt nicht

| avs-1p: 1903817112]
I

|Falscher Barcodeaufkleber 619137134 vorhanded

19.11.2005

Riicklieferung oder Gefahrgutl

FEHLERDATUM H
ENTSCHEIDUNG .

Figure 6.3: Graph structure of the bottom record in Figure

always be exactly the same. For example, in the layout of a given record, a field
present in the original wrapper definition may be missing or may wrap to two lines
instead of one. Or, because of the shorter length of an entry, certain edges between
nodes may be missing. One such example is shown in Figure[6.2} Our graph matching
procedure must allow for such situations.

There is a special class of matching algorithms known as error tolerant algorithms,
which aim to find inexact matches where some correspondences between both graphs
are missing. However, by using the techniques detailed in Section which allow
the wrapper designer to specify the structural changes that can occur, we have found it
unnecessary to resort to an error tolerant algorithm with its additional computational
complexity.

Many of these graph matching problems, including subgraph isomorphism, are
known to be NP complete. We have chosen to build our wrapping method around

94

6.2. Technical implementation

the Ullmann algorithm because of its flexibility; this is described in more detail in the
next section. [Messmer|1996] (p. 134) states the worst-case runtime of the algorithm
as O(m"n?) for a model graph with m and an input graph with n vertices. Due to the
limited size of the graphs in our application, the algorithm’s performance was found
to be more than adequate in practice. Many other algorithms have been proposed in
the literature, which offer reduced complexity but often present further restrictions to
the graphs being matched, making them difficult to adapt to our application. To name
just a few examples, [Hopcroft and Wong|1974; Aho et al.|[1974] propose polynomial
time algorithms for planar graphs and trees respectively. [Messmer and Bunke|1999;
McKay| 1980] propose efficient algorithms for comparing a large library of graphs
against a single model graph. [Cordella et al.[2004] presents an efficient algorithm for
(sub)graph isomorphism suitable for matching large graphs. As this method also sup-
ports attributed matching, it presents a viable alternative to the Ullmann algorithm if
computational complexity becomes a problem. A detailed summary on graph match-
ing algorithms and their applications in pattern recognition and related fields can be
found in [Conte et al.|2004].

6.2.3 The Ullmann algorithm

The Ullmann algorithm [Ullmann| 1976] was chosen as a basis for our wrapping
method because of its flexibility and suitability as a basis for our application. It offers
the following advantages:

e the algorithm can be modified to match directed graphs (this modification is given
in the paper);

e the algorithm finds all possible subgraph isomorphisms in the input (document)
graph;

e the algorithm can be relatively easily modified to support attributed matching,
i.e. the use of attributed nodes and edges with matching conditions;

e at the start of the algorithm and at each step, it is possible to determine exactly
which nodes and edges have been matched or are still being considered for
matching. Thus, it is possible to prune unlikely matches immediately from the
search tree to keep time and space complexity at a minimum.

This last point is very important: the basic algorithm is simply a brute-force enumer-
ation of all possible combinations of nodes and edges. Even on a modern computer,
it becomes inpractical to execute this algorithm on all but very small graphs. The

95

Chapter 6. The graph-based approach to wrapping

refinement procedure, which prunes impossible search paths, results in a dramatic re-
duction in search space and processing time. Should this procedure not suffice, fur-
ther application-specific heuristics can be introduced to reduce the search space even
further, although these might not guarantee that all subgraph isomorphisms will be
found.

The basic algorithm is simply a tree search of the entire search space. In this chap-
ter, will use the same terminology as in [Ullmann/(1976]]. The algorithm is designed to
find all the isomorphisms between a given graph G, = (V,, E,) and subgraphs of a
further given graph Gz = (V, Eg) where V and E refer to the points and lines of the
respective graph. The numbers of points of G, and Gy are p, and pjg respectively. The
adjacency matrices of G, and Gg are A = [a;;] and B = [b;;] respectively.

The current state of a node in the search tree is stored in a p, X pg element matrix
M = [mz-j] . At the root of the search tree, the start matrix M° is constructed where:

0 if we know a priori that the jth point of G4 could not correspond to

3
I

the ith point of G, in any subgraph isomorphism,
1 otherwise

Thus, the start matrix M° represents a one-to-many correspondence between the
points in V,, and the points in V. The matrices at the terminal nodes of the tree, M’,
all represent distinct subgraph isomorphism candidates and contain exactly one number
1 in each row of the matrix. Thus, they represent distinct one-to-one correspondences
between the points in V, and the points in V5.

The tree search procedure is illustrated in Figure At each level, a given row
of M is changed to only contain one 1. In other words, at each successive branch of
the tree, the correspondence between one point in V, and another point in Vj is fixed
until, at the final level, all the correspondences have been fixed. Therefore, the search
tree has a depth d equal to p,. A given subisomorphism whose matrix corresponds to
M’ is said to be a subisomorphism under M if its terminal node is a successor of M, i.e.:

(me]-) mgj =1 — my=1

1<i< Pas

1<j<pp
Finally, although the subgraph isomorphism candidates at the terminal nodes M’ rep-
resent distinct combinations of correspondences between the points of V,, and Vj, a
final check needs to be carried out to reject correspondences which are not compatible
with the structure of G, and therefore do not represent valid subgraph isomorphisms.

96

6.2. Technical implementation

111011 pq0
101111
110101
011111

100000 pfl

101111

110101

L 001000 pfd-2

000100
110101

2 011111

0100 OO1000A@F1
0 0 000100

0 0 000100
1111 011111

0100 001000 OO]OOOAAd:A4’
0 0 000100 000100
0 0 000100 000100
0000 010000 001000
v v

Figure 6.4: The tree-search procedure of the Ullmann algorithm for subgraph isomor-
phism

97

Chapter 6. The graph-based approach to wrapping

6.2.3.1 The refinement procedure

The refinement procedure as defined in [Ullmann||1976] presents a significant im-
provement to the basic tree-based enumeration, which discounts unfruitful search
paths at an early stage of the process. It corresponds to a check that is carried out
directly on the matrix M at each node in the search tree.

Let v,; be the ith point of V, and vg; be the jth point of V. Recall that, at a given
node M in the search tree, for all values of i and j, m;; = 1 means that the corre-
spondence between v,; and vg; is being considered for all subisomorphisms under
M.

From the definition of subgraph isomorphism, for every adjacent point v,y of v,;
in V,, there must also be a point vg, in Vj that is adjacent to vg;. If this does not hold,
we can preclude the correspondence between v,; and vg; for all subisomorphisms
under M. In this case, m;; is set to 0.

At the terminal nodes M’, the above condition holds for all values of mij. This
is a necessary and sufficient condition for subgraph isomorphism. Therefore, it is no
longer necessary to perform an additional check that the terminal node represents a
valid subgraph isomorphism.

6.2.3.2 Initial experiments

In our initial experiments, a few changes were made to the procedure to make it suit-
able for attributed relational graphs. As described at the beginning of this section, the
start matrix M° allows us to preclude correspondences between points in V, and Vg
where we have an a priori reason that they could not correspond to each other in any
subgraph isomorphism between V,, and Vj. This provides us with an ideal oppor-
tunity to preclude correspondences between nodes which do not fulfil the matching
conditions that have been set in the wrapper definition.

Whereas the starting matrix allows us to consider attributed nodes this way, it still
assumes that all edges are equal. In order to preclude the matching of attributed
edges that do not fulfil the matching rules, each attributed edge is also represented
as a point in the graph. These “points from edges” are then joined by (unattributed
directed) lines at the node-edge and edge-node interface, as shown in Figure

Thus, for an example graph with m nodes and n attributed edges, we generate a
graph G, with p, = m + n points and g, = 2n (directed unattributed) lines. Similarly,
for a document graph with p nodes and r attributed edges, we generate a graph Gg
with pg = p + r points and g5 = 2r lines.

98

6.2. Technical implementation

Node —DE—D Node
Node Node ¢

—> £
Y

Node

Node

Figure 6.5: Example of edges being represented as nodes in the graph

To avoid confusion, we will use the terms vertex and line to refer to the points
and lines of G, and Gg; the terms node and edge will be reserved for the original
graphs as shown to and manipulated by the user.

The starting matrix M is therefore generated as follows:

1 if vy and vg; represent the same type of item (node or edge);

in the case of v,; and vg; being edges, they represent the same
m? = relationship; and if all additional matching conditions laid out
in the wrapper specification are met

0 otherwise

The algorithm for directed subgraph isomorphism in [Ullmann|{1976|] was imple-
mented and initial tests were carried out on both the basic tree search algorithm and
the algorithm with the refinement procedure. Whereas the basic algorithm became in-
tractable when run on graphs with more than about four or five nodes, the refinement
procedure was found to provide a dramatic reduction in time complexity, resulting in
more than adequate performance for our application, even with much larger graphs.
The performance results in Table run on a document graph containing 20 nodes
and 31 edges with example subgraphs of varying size, show the difference according
to our experiments.

] H without refinement step H with refinement step ‘
No. nodes/edges 2/1 3/2 4/3 2/1 | 3/2 4/3
No. iterations 6080 | 9449181 | ??? 1743 | 2789 | 3061
Execution time (ms) || 1102 | 324 925 7?77 90 120 170

Table 6.1: Effect of the refinement procedure on the performance of the Ullmann al-
gorithm. With four nodes and three edges, the algorithm would have taken too long
to complete without the refinement step

The only exception is when the example graph is not fully (weakly) connected.
This can occur if the wrapper has not been specified properly. A node which is not

99

Chapter 6. The graph-based approach to wrapping

connected to any other node in the graph hinders the refinement procedure’s ability
to prune the search tree effectively. As the result is also meaningless, we define weak
connectivity as a requirement for the wrapper definition.

6.3 Inexact matching

After implementing the algorithm in Section and experimenting with real-life
data sets, we realized that the required “error tolerance” could be achieved without
resorting to an inexact matching algorithm. The two main features of our approach,
incomplete matching and multiple match edges, are described in the following subsec-
tions.

6.3.1 Incomplete matching

In most situations where records have a variable structure, we found that it was pos-
sible to simply remove certain nodes from the example graph to match all the records
in the document. Thus, we were essentially defining what must be present in the
document for the wrapper to detect it as a record. Any additional nodes or edges that
may have been present had no effect on the result.

We found the notion that a wrapper can be precisely defined preferable to us-
ing an inexact matching algorithm, which with its added complexity could generate
unpredictable results with a significantly higher computational cost.

Using the process of rectangular containment expansion, as described in Section
4.3.2.2, we then add all unmatched nodes that fall within the bounding box of all the
matched nodes to the result.

6.3.2 Multiple match edges

In situations where the simple removal of required nodes did not suffice, this was
because additional lines of text or records were present either in the example instance
or in the document. Thus, it was decided to increase the flexibility of our wrapper
specification system to allow for multiple match edges. Whereas normal edges must
have a one-to-one relationship between example and document in a wrapping result,
multiple-match edges can match continuous runs of edges in the document in a par-
ticular direction, allowing tabular structures and listings with arbitrary numbers of
rows to be wrapped with ease.

100

6.3. Inexact matching

6.3.2.1 Multi-step matching algorithm

In the original prototype system as published in [Hassan|2009¢], the wrapper graph is
split into sub-graphs (sub-examples) along its multiple-match edges, which are then
matched separately. These sub-results of the matching are then combined using a
further matching step into the final, complete result.

When the wrapper graph is split along a given multiple-match edge into its sub-
examples, this edge remains as part of both sub-examples, as shown in the example in

Figure|6.6| (b).

This method for matching requires that each multiple match edge splits the wrap-
per graph completely into two sub-graphs. Thus, no edges apart from that particular
multiple match edge may be present between the two sub-graphs. Geometrically, this
restriction is easy to visualize and was not found to hinder the practical creation of
wrappers.

Behind the scenes, the individual sub-results are found using the Ullmann algo-
rithm with the refinement procedure for each sub-example. These sub-results are
then combined in a further graph matching step. Two graphs are created, G, and G,
with V., and V; representing all sub-examples and all sub-results respectively. As the
edges this time are not attributed (but they are still directed), they can be represented
directly as lines in the adjacency matrix. Thus for adjacency matrices C and D of G,
and G; respectively:

o 1 if sub-examples v,; and v,; are connected by a multiple-match edge,
7710 otherwise

1 if vs; and vs; represent sub-results of differing sub-examples and there
dij = exists a maximal path from vs; to vsj,
0 otherwise

We refer to edges in a sub-result, which have been matched to a multiple-match
edge in the respective sub-example, as matched multiple match edges. A path exists
between two sub-results v; and v;; if, from a matched multiple match edge of vy;, it
is possible to continue along edges in the same direction (as long as they meet the
conditions specified in the wrapper definition) to reach a matched multiple match
edge of vs;, or vice versa. This path is maximal if it is not possible to continue further
to reach another matched multiple match edge.

The requirement of a maximal path allows unwanted overlapping results to be
avoided. Consider the example in Figure where the number of lines in a record
may differ, but the record is always separated by whitespace. By setting a maximum

101

Chapter 6. The graph-based approach to wrapping

for the edge length, we can use multiple match edges to wrap such structures. Be-
cause the algorithm only looks for maximal paths, only the path between the top and
bottom lines of the record will be found, extracting only the complete record. Because
of the maximum edge length condition, the algorithm does not continue to the next
record. In other words, the algorithm looks for the longest path that fulfils the con-
ditions in the wrapper definition. Because the paths between intermediate lines are
not maximal, these overlapping part-records, which we do not wish to extract, are
avoided.

After execution of the matching procedure, the resulting matrices M’ now repre-
sent compatible combinations of each of the sub-results, each of which can be joined
together to produce an integrated result, as shown in Figure

6.3.2.2 Performance issues of the multi-step algorithm

Initial experiments were carried out on the three wrappers described in Section
The largest weakness of the multi-step matching algorithm was not found to be the
requirement that each multiple-match edge split the wrapper graph into two, but per-
formance with certain wrappers using multi-match edges, particularly on complex
documents.

Whereas the travel wrapper performed very quickly indeed, the other two wrap-
pers were significantly slower. We attributed this to the fact that these documents
contained a larger number of records per page on average. What surprised us, how-
ever, was that certain pages of the travel dataset, which contained no data to be ex-
tracted, took very long to process (typically over 20 s). On closer examination, these
pages contained densely-packed classified information, much like in the classifieds
dataset.

We found out that the reason for the slow processing time of these pages was
the multi-step approach to graph matching. Although no results were returned at the
end of the matching procedure, the wrapper was defined in such a way that each sub-
graph that was matched against the page returned almost every object on the page as
an intermediate result. All of these intermediate results were then compared against
each other to find the final result, of which there was not a single matching pair.

This limitation led to the development of a new, one-step algorithm to detect wrap-
ping instances using multiple match edges. By reworking the refinement procedure
to also take multiple match edges into account, we not only prune unfruitful search
paths even earlier in the matching process but, more importantly, we avoid the neces-
sity of several graph matching operations with potentially hundreds of intermediate

102

6.3. Inexact matching

col heading

A 4

row heading

------- P dataitem

a) Simple wrapper with multiple-match edges,

which are marked with dotted lines

col heading

v

A 4

data item

row heading ------ | 4

b) The wrapper is split into sub-graphs along the

multiple-match edges and each of these sub-graphs
is matched independently

instance

instance

instance

instance

instance

instance

instance

¢) A sub-instance association graph is formed, in which all pairs of
instances are joined with an edge if it is possible to get from one
to the other by extending a multiple-match edge. An (undirected)
matching step is then used to extract the final solution

Figure 6.6: Integration of sub-results using graph matching in the multi-step algo-

rithm

103

Chapter 6. The graph-based approach to wrapping

results, leading to significant performance increases. This algorithm is described in
the following subsection.

Algorithm 8 The one-step refinement procedure onestepRefinement

1. forall m;jin M, 1 <i < p,, 1 <j < pg:

o if mi]- =1
(a) let v, be the ith vertex of V,, and vg be the jth vertex of Vi

(b) evaluate the following condition:
forall (v, e,) where v, is a neighbour of v, connected by edge e,

i. if e, is of type singleMatch:
— there exists a vertex vs where:
* v is a neighbour of vg connected by edge e; and
* e; meets the matching criteria specified in e, and

* a correspondence between v, and vs has not been precluded
at this point in the search, i.e.:
my = 1 where k and I are the indices of v, in V, and vs in Vj
respectively

ii. else if e, is of type multipleMatchLast or multipleMatchFirst:

— the function existsMultipleMatchPath(v,, v,, vg, vs, €,)
evaluates to true

(c) if the condition in step (b) evaluates to false, set m;; = 0

2. repeat step 1 if any value of m;; has been changed

6.3.2.3 One-step matching algorithm

With the one-step matching algorithm, all checks against matching conditions involv-
ing single and multiple match edges are incorporated into the refinement procedure
itself. With this method, is it no longer necessary to represent attributed edges as spe-
cial types of points in the graph, and the requirement that each multiple-match edge
splits the wrapper graph into two also no longer applies.

The starting matrix M° is formed according to the matching criteria as with the
multi-step algorithm in Section The only difference is that only the nodes are
included in the matrix, as edges are no longer represented as points. The refinement
procedure is given in Algorithm [8{and uses the function existsMultipleMatchPath as
defined in Algorithm [9] As before, the one-step refinement procedure is a necessary

104

6.3. Inexact matching

Algorithm 9 The function existsMultipleMatchPath
pre: v, and v; are joined together in the wrapper graph G, by edge ¢,; vg and v; are
the corresponding nodes of v, and v; in the document graph Gg respectively

1. return true if a path exists between vg and v; that satisfies the following condi-
tions:

(a) all edges in the path are in the same direction as and fulfil the matching
conditions defined in e,;

(b) if e, is of type multipleMatchLast:

i. the path from vg to v; consists of one or more nodes fulfilling the match-
ing criteria in vg, followed by one or more nodes fulfilling the matching
criteria in vy

ii. the path is maximal, i.e. cannot be extended backward or forwards, i.e.:

e there exists no edge pair (vy, ex), where e, points from vy to Up, Ux
fulfils the matching criteria in vg and ey fulfils the matching criteria
in e,; and

o there exists no edge pair (vy, ey), where e, points from vs to vy, Uy
fulfils the matching criteria in v5 and e, fulfils the matching criteria
in e,

(c) elseif e, is of type multipleMatchFirst:

i. the path is minimal, i.e. there is no intermediate node between vg and
v; that satisfies the matching conditions of vg and/or v;.

and sufficient condition for subgraph isomorphism, and checks all nodes, edges and
multiple match edges against their respective matching conditions. Therefore, the
resulting matrices M’ correspond to distinct wrapping results, and no further checks
are required.

6.3.2.4 Two types of multiple match edge

To extend the number of possibilities for wrapper generation, it was decided to add
a further type of multiple mach edge, multipleMatchFirst. When this type of edge
is used between two given nodes v, and v., both nodes should have matching con-
ditions set. When these nodes are matched to vg and v; respectively, the matching
algorithm will look for and match the last node before vz and the first node after v
that match the respective conditions.

105

Chapter 6. The graph-based approach to wrapping

This allows, for example, the first and last lines of a record to be matched using
conditions for both nodes. As long as these conditions do not match any intermediate
lines in the record, this type of edge will match the first line, the last line and all rows
in between.

The function existsMultipleMatchPath, as given in Algorithm 9} precisely defines
both types of multiple-match edge.

6.4 Wrapper creation

In our prototype system GraphWrap, wrappers can be created or edited in two ways.
The easiest most common way is to use the user interface, as described in Section[6.4.1}
As wrappers are stored in XML format, it may sometimes be quicker to edit the files
directly. Also, some advanced features are only available by editing the files directly.

6.4.1 Interactive wrapping using the user interface

The GUI of PDF Analyser, as described in Section has been extended to support
a graph view of the document. Whereas the graph structure can also be overlaid on
the page view, the flexible layout of the graph view enables the user to zoom in and
out and manipulate the wrapper interactively. The current wrapper can be executed
at any time, and the visual result will be shown immediately in the page view.

The graph view has been built on top of the TouchGraph library [TouchGraph
LLC|2006 (Web)|]. As the screenshot in Figure [6.8| shows, green edges represent ad-
jacency edges pointing eastwards, and blue edges point southwards, irrespective of
their physical direction. Nodes which belong to the document but are not part of the
current wrapper graph are shown in a faded colour. These can then be added to the
wrapper definition, if desired. The bottom part of the window allows the matching
conditions of the current node or edge to be viewed and modified.

The following steps summarize the interactive creation process of a wrapper:

1. The appropriate granularity is selected, i.e. lines or blocks, and the desired doc-
ument is opened

2. On the page view, the user selects one example record by drawing a marquee
box around it. Its corresponding subgraph is found automatically and dis-
played in the graph view. This subgraph already fits the definition of a valid
wrapper

106

6.4. Wrapper creation

| NAME: The Ritz Or The Besch Resor

| ADDRESS: 3 Phip Aus,
Broacheach, Qld 4?88
BHONE: (07) 5531 A1

Q'ualcheaw

C-ﬂ?ﬁ
531 5185

: 'E MAIL mfc@treﬂmbsort corr 4l E MAii. mfo@trefawosor‘r GO E- MAIL mfo@‘frefl‘f?fosor‘f aorr al

Figure 6.7: Example of the significance of the maximal path between multiple match
edges. The example on the left shows the record which is being wrapped. The wrap-
per is specified using a multiple-match edge between the NAME and E-MAIL nodes. If
all paths between the multiple match edges are considered, this leads to several over-

lapping incomplete records (centre). Considering only the maximal path delivers the
result that we are looking for (right)

< PDF Analyser [-[o]x
Open Document Segmentation Mode p— = Layers Wrapper
o — 2 Indiv. chars =) L] [¥] Page Image - Root Subl Sub2 Sub3
iew Gray oom
=raw) Initial lines Clusters RLNCE Euii (Fuei) (FeE
50% Repl s s, s
e e pe— = 7 Edges eplace ave ave ave snow L
Save Wrapper) Blocks [IRemove spaces [jnes of text = ‘ e ‘ ‘ e | e | e
hiy - Spring 2007 = | search| | Expansion limit 10 - Lacalllvradlus zoam[¥] Hynerbalic [40] |stop
ngs_emlus ve hou- umﬂemmgzaat p!aue fora few hours o - e
_nd&!nn vz fiom i Al o il L u >
T I | | |iselected node] 1D: 23840485

Is enabled for wrapping cluster no. items: 0 - x1: 195.82 x2: 295.29364 Xcen: 245.55682 y1: 926.76 y2: 936.76 Ycen: 931.76 hc 23840485 text: NAME: Sunset Island Resort

Min lengthe —15 Max length:| —15 Match content: ® Nene (_ Exact string) Substring () Regexp Extract this node

Current font: AANEED+FrnkGothITCEKBT,Bold [| Match font Font size: 10.0 [_| Match font size Eold []Mauch bold

fontsize: 10.0 font: A

Field namezname

[Jitalic []Match italic

Figure 6.8: Example of the GUI in action. The left pane shows the page view; the
right pane shows the graph view, allowing the wrapper to be edited and additional

wrapping constraints to be added. When the wrapper is executed, the found records
are shaded on the page view

107

Chapter 6. The graph-based approach to wrapping

Classified ad deadline is
Tuesday at 5 p.m.

Ads accepted from

9 a.m. to 5 p.m. weekdays.

Coastal Pzint

Vassidieds

jane.johnson@coastalpoint.com

Call Jane to place

your classified ad.
302.539.1788
P.0. Box 1324

Ocean View, DE 19970

NOW HIRING:

Front Desk/Maint.
Experience preferred
Housekeepers
Needed thru Oct. 18th
Holiday Inn Express
39642 Jefferson Bridge
Rd.~ Bethany Beach, DE
Apply in person

Experienced
Wait Staff
Year Round
Full Time & Part Time
Call John, Monday - Friday, 1 - 3:
302.537.4101

@ﬁlli

Are you ready for a change?

RECORDS: 45s FROM 60s,
70s, 80s, 90s. 33 1/3 - Elvis,
Michael Jackson, Motown
and more. Best offer:
(302)539.0224

DOLLS - INCLUDING (10)
Barbie dolls; doll clothing.
Can email pictures. Plck up
West Fenwick or Ocean City.
(302)436.5679

(2) LIMITED EDITION

EMPLOYMENT EMPLOYMENT APPLIANCES

AIR CONDITIONER, window

unit. 5,000 BTU 115V by
Goldstar Ice. Cold air. $40
(302)436.2197

DRYER, GOOD condition:
$75. (302)381.2217

AIR CONDITIONER: 5,000
BTU. Frigidaire window unit.
Works well. $40 Ocean View
(302)829.8399

Classified ad rates: Line ads are $5.50 for the first 20 words, 20¢ per additional word. Display ads are $7.00 per column inch.
Non-commercial ads for items $2,000 or less are free up to 20 words. Ads exceeding 20 words become paid ads.

COMPUTER ASSISTANCE

COMPUTER

Repair, Setup,
& Networking
Services

Affordable Prices

[WeAreSynthetic.com - 302.682.0573 |

CLOTHING

LONG BLACK LEATHER coat

ELECTRONICS

NEW DESKTOP COMPUTER

: Porcelain Cabb Patch ———
® server Assmlams d(o)ll'lcse als?gnez ZE)J/Q Xaavicer iﬁg::/av:E:‘x)g:EansE;g; with genuine blue fox collar. Dual-core CPU 2.7GHz, .AGB
*HostgHostesses | fobere 1 ersin) b (0N L e e, S S oo e o
KF-Spannring, Alu-Druckguss
Clamping ring, die-cast aluminium
9) 4 Nennweite Abmessungen Artikel-Nr. Preis
< - E Nominal width Dimensions Order No. Price
X A (mm) B (mm) C (mm) D (mm) €
DN 10716 42 61 16 22 100 1016 7,00
DN 20/25 54 72 16 82 100 2025 8,00
© n:i DN 32/40 70 90 16 46 100 3240 10,00
B8 DN 50 95 123 25 62 100 0050 21,50
Andere Abmessungen und Ausflihrungen auf Anfrage. Other dimensions and versions on request. as 5
LOCAL MEDIA

Nestled at the end of Peninsular Drive, Sun-
set Island Resort provides exclusive bou-
tique holiday accommodation.

Centrally located on a quiet street, you
will find Sunset Island Resort is just a short
walk to Cavill Mall, and on to the renowned
and pristine beaches of Surfers Paradise,
Gold Coast, in the heart of Queensland's
celebrated and sought after holidav desti-

Sunset Island Resort

2007-2008

NAME: Sunset Island Resort
ADDRESS: 3 Sunset Blvd,
Surfers Paradise, Qld 4217

PHONE: (07) 5592 1744

FAX: (07) 5592 1749

CONTACT: Graham Christensen

WEB: www.sunsetisland.com.au
E-MAIL: vacation@sunsetisland.com.au

terland with its mountains, rainforests and
wineries is a great place for a few hours
away from it all.

You will love every minute of your stay
with us here at Sunset Island Resort — your
ideal home away from home in Surfers Para-
dise, tucked away from the bustling streets
but yet so close to the action...the ideal
holidav getawav - look no further...Sunset

Discover the jewel of the
Gold Coast Beachside
W 18 luxcury fully self-contained boutique
artments
50 metres to the sand, no roads to cross
Sparkling heated pool, spa and barbe-
cue in walled garden setting
W Magical ocean views from all apartments
W 200 metres to restaurants, 24-hour con-
venience store
B 20 minutes walk to central Surfers, or
Broadbeach shopping, dining e
W Secure underground parking, security lift
to all floors
B 4-star ratinf
A holiday you'll treasure.

At a price you can afford

Emercld Sonds Holiday Aportments

ADVERTISING FEATURE

NAME: Emerald Sands Holiday Apartments
ADDRESS: PO Box 1712,
Surfers Paradise, Qld 4217
PHONE: (07) 5526 7588
FAX: (07) 5538 6522
CONTACT: Sherin Marriott
WEB: www.emerald-sands.com
E-MAIL: john.marriott@bigpond.com

Figure 6.9: Example records from the three datasets

108

6.4. Wrapper creation

3. If the user were to execute the wrapper at this stage, it would likely return hun-
dreds of overlapping results. Therefore, it is necessary to set conditions to one or
more of the nodes. By clicking on a node or edge in the graph view, the avail-
able conditions will be displayed on the bottom of the screen, and can be edited.
Nodes can also be added to or removed from the wrapper if necessary

4. By clicking the button Test wrapper, the current wrapper can be executed and
the results shown to the user. It is also possible to try out the wrapper on a
different page or different document using the GUI

5. When the user is satisfied with the wrapper, it can be exported by clicking Save
wrapper. The resulting wrapper can then be used with the command-line tool
graphwrap to automatically extract data from other PDF documents and output
it in XML format

The following conditions are available for nodes and edges:

Node conditions Edge conditions ‘
Text matches string, substring or regexp | Minimum and maximum length
Minimum and maximum text length Alignment left, right, centre

Font size, font name, bold, italic Crosses ruling line (yes, no, any)
Ruling line above, below, left, right Multiple match (single, first, last)

6.4.2 Hierarchical wrapping

In order to wrap nested structures, such as individual fields within records, wrappers
can be nested inside each other. There are three modes of nesting:

e subgraph: here, only the nodes that have been explicitly matched by the parent
wrapper will be made available to the child wrapper;

e area-based: in this mode, rectangular containment expansion (see Section
is carried out on each result of the parent wrapper to add nodes that have not
been explicitly matched, but fall within the bounding box of the result. This
mode is useful if multiple match edges have been used in the definition of the
parent wrapper,

e whole page: in this mode, the entire page of the document is made available to
the child wrapper, but only results of the child wrapper that intersect the area
of the parent wrapper are output. This allows tabular structures to be wrapped.
See Section [6.5.2)for an example application of this technique.

109

Chapter 6. The graph-based approach to wrapping

6.5 Experiments

In order to provide an indication of the effectiveness of our wrapping approach, we
created three wrappers on three different data sets, which represent possible use-case
scenarios of our system. Figure |6.9) gives an example of each of the three types of
document. These wrappers are described in the subsections below. Numerical results
are given in Table

6.5.1 Coastal Point Classifieds

The classifieds wrapper was designed to extract the textual content of all normal (un-
boxed) classified advertisements from the Coastal Point newspapelﬂ and was run on
eight issues. An example of the content is shown in Figure (top). In order to
allow for varying amounts of text in a classified advertisement, an edge of type mul-
tipleMatchLast was employed in the design of the wrapper, with the maximum length
set to the distance between two lines.

After executing the first version of the wrapper, it was found that the various is-
sues of the Coastal Point newspaper across our dataset employed slightly different lay-
out conventions. For example, whereas in the example in Figure 6.9 (top) whitespace
is present between each advertisement, this was not always the case. Also, certain
issues used bold text for the telephone number and contact information.

The initial version of the wrapper also delivered a number of false positives on
the page. The following changes were made to reduce this number:

e the top node of an advertisement, containing the title, was always in bold text
and in capitals. However, certain items offered for sale did not begin with text,
but with a number. Therefore, the following conditions were set:

- match bold: true
- match text: regexp

— match text string: the regular expression [A-Z]{4,}, i.e.: the string must
contain at least four capital letters in sequence

e the multiple-match edge joining both nodes was given the additional condition:

— crosses ruling line: yes

LCoastal Point classifieds,
http://www.thecoastalpoint.com/_files/classifieds/classifieds.pdf

110

6.5. Experiments

We also experimented with setting isAligned to left. This reduced the number of false
positives even further. However, the few results that were not left aligned were not
returned, so this condition was abandoned.

Ideally, a maximum width condition for the nodes would have been available,
which would have prevented practically all false positives which occurred in this
situation.

6.5.2 Pink GmbH component catalogue

The catalogue wrapper was designed to test our hierarchical approach to wrapping
tables, and was run on a 72-page catalogue of technical component An example of
one of the tables is shown in Figure 6.9| (centre). Here, the wrapper was designed to
extract all items that have a nominal width, order number, price and measurement A;
as well as measurements B, C and D if these were given.

The top-level wrapper was created to extract each individual row. The font and
size were fixed and the leftmost node was set to begin with the string DN (the first
two letters of the order number). A multiple match node was used to extract the
remainder of the column.

At the second level, several wrappers were created, one for each field. Again, a
string condition was used to limit the wrapper to the desired field. The wrappers
were then combined using the whole page mode.

Of the three datasets that were used, the catalogue had the most consistent for-
matting throughout. Unsurprisingly, this led to an almost perfect wrapping result
with no false positives. However, a few inconsistencies were found, for example one
column was headed C(mm) instead of C (mm) (i.e. the space was missing). One col-
umn was also set in a different font size. After all these inaccuracies were accounted
for in the wrapper specification, it was possible to extract all the data items correctly
with the wrapper.

6.5.3 Travel Monthly archives

Finally, we decided to test our system on a much larger data set, a collection of back is-
sues from the Travel Monthly magazineﬂ which contains 190 PDF files with 445 pages
in total. Each destination contains a “fact file” box with contact information, which
we extracted with the wrapper travel. An example of two such records on a page

2Pink GmbH Vakuumtechnik component catalogue, http://www.pink.de/pdf/katalog.pdf
3Travel Monthly archives, http://www.travelmonthly.com.au

111

Chapter 6. The graph-based approach to wrapping

] Wrapper | classifieds | catalogue | travel |
No. docs 8 1 190
No. pages 24 72 445
No. data items 1095 4835 1385
Precision 98.16% 100% 99.78%
Recall 98.16% 100% 97.11%
Processing time/page 7.86s 8.48 s 43s
Match time/page 3.34s 6.13 s 0.68 s

Table 6.2: Experimental results of the graph-based approach on three datasets

is given in Figure [6.9] (bottom). The condition for the top node was set to include the
substring FACT FILE or Fact File. In order to allow for varying amounts of text in a
classified advertisement, an edge of type multipleMatchLast with a maximum length
condition was also used here.

After fine-tuning the conditions, this wrapper was also able correctly extract al-
most all records, apart from a small minority which had a vastly different layout (e.g.
double line spacing). Due to the larger size of the dataset (several years” worth of is-
sues), a variety of formatting conventions were encountered. Some records included
a graphic (e.g. logo) between the heading FACT FILE and the data. This graphic was
represented in the graph as an image node. As image nodes are not yet supported by
the system, these records could also not be retrieved.

6.6 Discussion

This chapter has presented a novel approach to user-guided wrapping from print-
oriented documents using graph matching techniques. Through experiments we
have shown that this method can be used in a variety of wrapping scenarios, and
perform accurately and quickly. Although the task of graph matching is often asso-
ciated with high computational complexity, we have shown this not to be a problem
for our application in practice. The one-step algorithm presented in this chapter keeps
search and time complexity to a minimum.

In a similar fashion to the Lixto Visual Developer for wrapping HTML files, we have
found that robust wrapper generation required adding a large number of matching
conditions, to ensure that false positives are avoided. A major limitation of this pro-
totype system is the limited number of matching conditions that can be set for a given
node or edge. The next step would be to develop the user interface to allow for any
combination of conditions on any property to be set, as is already possible with Lixto.

112

6.7. Future directions in graph-based wrapping

We also found the notion of multiple match edges not as simple to understand as we
first thought it would be. Although the addition of a third category, multipleMatch-
Last, has increased the number of possibilities for wrapper generation, it has also
complicated matters further. The categories first and last determine the conditions
that apply to extra nodes that are added between the matched multiple-match edges.
It would probably be much simpler for the wrapper designer to set these conditions
separately, rather than have them inherited from the neighbouring nodes.

The current implementation of multiple match edges makes it easy to define
wrappers where two or more repeating rows occur. However, these wrappers will not
work in cases where only one (or no) row is present. Extending the edge attributes to
allow for optional edges would be one way to allow for such situations. Alternatively,
a number of different graphs or patterns could be used, in the same way as in the Lixto
VD, which could even be generated automatically by the user interface, to allow for
each situation (0 rows, 1 row, 2 or more repeating rows).

A further improvement to the system would be a function to automatically create
multiple match edges. After the user has selected the respective from and to nodes in the
example instance, this function would automatically create a multiple match edge of
the appropriate type with the relevant matching conditions, ensuring that it matches
all edges and nodes between the two selected nodes.

Finally, the flexible graph view based on the TouchGraph library was not always
very easy to work with. An improved layout algorithm which keeps the graph up-
right whilst allowing the layout to remain flexible, so that most edges point more or
less in their real direction, would improve usability. Also, a direct superimposition of
the flexible graph structure on the page view or the ability to click on either view to
select nodes would improve the user-friendliness of the system considerably.

In this section, we have summarized the main limitations of the prototype system
as applied to the methods proposed in this chapter. In the next section, we propose
future research directions in graph-based wrapping.

6.7 Future directions in graph-based wrapping

In order to improve the user-friendliness, power and robustness of the graph-based
approach, the following future research directions are proposed:

e Logical relations between nodes: in the present system, the edges only rep-
resent adjacency relationships in a given direction. It would be interesting to
experiment with the use of logical relations as discovered in the document un-
derstanding process, such as superior-to-inferior or reading order, to see if they

113

Chapter 6. The graph-based approach to wrapping

could simplify the wrapping process or make new wrapping applications pos-
sible:

- spatio-logical relations: the use of relations which express concepts that
refer both to the logical and spatial structures, for example: “neighbour
above, but within same text column”, could be particularly useful for cre-
ation of wrappers;

- wrapping across multiple pages: the current system does not allow for
situations where a record spans from one page to the next. By using a
logical edge of e.g. type reading order to join content from one page to the
next, such wrapping situations could also be enabled.

e Error tolerance: although the current system allows for a certain amount of
flexibility via incomplete matching and multiple-match edges, we found from our
experiments that even professionally typeset documents can contain minor lay-
out or formatting errors (or purposeful changes due to space reasons). These
include changes in font, font size, alignment, line spacing and adjacency. In the
present system, it is often difficult and time-consuming to define the matching
conditions in such a way that all records are found by the algorithm. Therefore,
in order to improve the flexibility of the system, the following investigations are
proposed:

- use of an error-tolerant matching algorithm: in the present system, the
use of a real error-tolerant matching algorithm was avoided for reasons
of complexity. However, as the search procedure can be tightly controlled
by the refinement step of the Ullmann algorithm (see Section [6.2.3.T), it
may be possible to allow for small changes in the graph structure without
increasing the search complexity to an unacceptable level. This would im-
prove robustness in situations where slight changes to the graph structure
occur;

- “fuzzy” evaluation of matching conditions: many formatting errors affect
only the attributes of the respective nodes, and not the graph structure it-
self. The use of a scoring-based or similar system to evaluate the matching
conditions could lead to significant improvements in robustness, even if an
error-tolerant matching algorithm is not used. The amount of “fuzziness”
could be interactively set by the user at a global or local level.

e Measures to automatically generate wrappers via wrapper induction: although
the use of a graph-based structure has made the creation process easier and
more intuitive, the creation process is not yet as straightforward for the user as

114

6.7. Future directions in graph-based wrapping

it could be. It would be worthwhile to investigate the possibility of automatic
wrapper induction methods based on two or more example records selected by
the user.

Structural changes to remove discontinuities: currently, the document analy-
sis (segmentation and graph generation) and wrapping stages of the process are
completely separate from each other. This means that any decisions made in the
wrapping stage cannot override or correct any errors made in the segmentation
stage. By using a hierarchical or pyramid graph structure, several granular levels
could be represented simultaneously. By using a Voronoi graph, adjacency rela-
tions in the four directions could also be deduced in a more robust way. The
discontinuity problem is discussed in more detail in Section[7.2}

Wrapping from other formats: our model of a PDF document, which essentially
represents the page as a set of rectangular objects (see Section[3.1), could also be
used with other formats, most notably PostScript, but also HTML [Kriipl et al.
2005]. Even though the idea of graph-based wrapping was partly inspired by
existing HTML wrapping approaches such as Lixto, it would be interesting to
investigate whether this approach could also be beneficial to HTML wrapping.

115

Chapter 7

Conclusions and further work

This dissertation has investigated two approaches to user-guided data extraction
from PDF documents, the conversion approach and the graph-based approach, both of
which were developed to a prototype stage and evaluated experimentally. Whereas
the conversion approach was based on a novel application of largely existing meth-
ods and principles, the graph-based approach involved the creation of new methods
and the application of graph matching algorithms to a domain in which they had not,
to our knowledge, been used before.

The conversion approach was shown to be suitable for documents of moderate
complexity containing regular tabular layouts. An example case study on a sample
document [Statistik Austrial2009 (Web)| is provided in Section Experiments car-
ried out on the graph-based approach show its ability to extract data from a wider
range of documents with high precision and recall rates. A summary of the main
advantages and disadvantages of both approaches is given later on in this chapter
(Section [7.1)).

In the course of investigating both approaches, several problems in related fields,
in particular document analysis and document understanding, were also addressed. This
thesis has therefore also made the following additional contributions:

e in Section a model for storing print-oriented data for document analysis
purposes was defined, and in Section [3.3 methods were proposed to populate
this model with PDF data, simplifying the data where necessary;

e in Section [3.4] the ordered-edge segmentation algorithm, an efficient page segmen-
tation algorithm for data held in this model, was proposed;

117

Chapter 7. Conclusions and further work

e in Section 3.5/ we presented the results of experiments on the above two stages
of the process, which demonstrate the suitability of these methods for complex
page layouts;

e in Section 4.3|an algorithm for automatic table recognition and structure recog-
nition was presented;

e in Section {4.4{the above algorithm was compared experimentally to another al-
gorithm in the literature, which was published two years later. Both algorithms
were found to give similar results and be able to detect tables in a wide variety
of documents. The problem of evaluating table recognition results was also pre-
sented. Appendix[A]lists common errors that are encountered in table recogni-
tion and proposes how they be consistently evaluated to produce precision and
recall figures comparable among different systems.

The various sub-problems have been discussed in detail in their respective chapters,
and future research directions have been proposed. The remainder of this chapter
provides a comparison of both approaches to wrapping and proposes future work to
address an important issue which affects not only data extraction from documents,
but document analysis and processing in general.

7.1 Comparison of the conversion and graph-based wrapping
approaches

In order to wrap data using the conversion approach, this data needs to be located
in tables, headings or other structures which are recognized by the PDF-to-HTML
conversion methods in Chapters If this data is understood correctly by the con-
version method, wrapping can be performed on the HTML conversion. This means
that the conversion approach is inherently limited in the number of wrapping appli-
cations in which it can be employed.

As described in Section[5.3} the graph-based approach was found to address most
the main weaknesses of the conversion-based approach and enable a much wider
range of wrapping programs to be created. Specifically:

e the wrapping is performed directly on the document’s visual structure: the
conversion to an intermediate format, such as HTML, which does not necessar-
ily represent the physical layout of the document, is unintuitive;

118

7.2. Further work: Addressing the discontinuity problem

e the graph-based approach is more expressivby allowing three types of struc-
ture to be used: the physical structure, the detected logical structure and the
attributes of the blocks. In the conversion approach, only the detected logical
structure can be used;

e by not necessarily requiring that the entire page be understood correctly, the
graph-based approach is more robust, as it can essentially ignore any errors
in segmentation, graph generation or structure detection outside of the region
of interest. In the conversion approach, such errors could affect the top-level
structure of the document, which would very likely prevent the wrapper from
functioning correctly.

7.2 Further work: Addressing the discontinuity problem

The biggest weakness that we see in the present system, which is common to many
other approaches based on document analysis and understanding, is what we term
the discontinuity problem: each step in the document analysis, understanding and
data extraction process is seen as a fully independent stage, which assumes correct
input and has no opportunity to correct any errors made in the previous stages. Even
the segmentation process is performed using knowledge specified on two different
granular levels, which do not always interact with each other. Unfortunately, docu-
ment analysis is inherently an inaccurate process and errors on one level propagate
to higher levels, which presents a real limitation to the possible robustness that such
a system can achieve.

In the present system, we have tried to address this problem in the following
stages:

e segmentation: the ordered-edge segmentation algorithm (see Section orders
the neighbourhood relationships in such a way that the most obvious neigh-
bourhood relationships are examined first, using only local knowledge. The
more difficult decisions are made towards the end of the process, when more
information about the complete structure, i.e. higher-level knowledge, is also
available;

1By representing the detected tables (or other structures) as logical relations and by creating a wrap-
per using multiple match edges, the graph-based approach can “simulate” the overwhelming majority
of use-cases of the conversion approach. However, in many of these cases a simpler, more robust wrap-
per could be generated using just the physical structure of the document. For example, it was possible
to extract all data cells of the Statistik Austria document in Sectionwithout error using this approach.

119

Chapter 7. Conclusions and further work

e table structure recognition: recall that the table search algorithm builds candi-
date tables by clustering together candidate columns. The validation procedure
(see Section [4.3.3), which is executed at each iteration of the table search algo-
rithm, examines the table on several granular levels to ensure that it is valid.

However, neither of these procedures is able to correct or reverse decisions made in
previous stages of the process. Whereas further improvements to the individual al-
gorithms could lead to slight improvements, we believe that we are now reaching
the point of diminishing returns, and the next stage of development is to address the
discontinuity problem in a methodical and systematic way.

We have already touched on this problem in various sections of this thesis. In
Section we suggested that an improved model of knowledge on several levels of
granularity would lead to further improvements. In Section[4.4.6) where we discussed
the table detection algorithm, we suggested that a multi-granular approach along the
lines of [Wang|2002] could deliver significant improvements in robustness and ac-
curacy. In Section where we discussed the graph-based approach, we proposed
replacing the flat graph representation with a hierarchical or pyramid-like structure
to represent the page content on multiple granular levels. The edges between neigh-
bouring nodes could also have fuzzy values.

Chapter 2 introduced the field of document analysis and the somewhat imprecise
concept of layout conventions, which are used by the document author to communicate
the logical structure of the document to the user. Recall that there are two types of
layout conventions, those specific to a particular document class or publication and
those generic to a broad range of documents. It is the firm belief of the author that,
whereas document specific conventions are of a firmly syntactical nature, document
generic conventions can be split up into syntactic and perceptual rules. Examples of
such rules are as follows:

e document specific: “Sub-headings are set in Garamond Semi-Bold, 14 pt., left
aligned.” “Body text is set in Garamond Regular, 10 pt., justified.”

e document generic:

- syntactical: “Sub-headings occur above text and are usually set in more
salient (e.g. larger or bolder) text. However, the text is not as salient as that
of headings.”

— perceptual: “A set of objects with the same alignment, in close proximity to
each other and equally spaced apart, belong to one higher-level element.”

120

7.2. Further work: Addressing the discontinuity problem

Whereas syntactical rules can be thought of as referring to the knowledge acquired
by humans, perceptual rules refer to the human visual system and the associated
hereditary knowledge. We believe that this hereditary aspect has not been given the
attention it deserves in the literature, even in systems designed for a broad class of
documents. Compared to natural scene images, real-world documents have a much
simpler visual structure. But simplicity deceives. The majority of approaches in the
literature are based on ad hoc methods on a given level of granularity, which suffice
for the interpretation of syntactical conventions, but not for perceptual conventions.
Section introduced some approaches to document analysis borrowed from the
computer vision field, which do not limit themselves to using just syntactical knowl-
edge about a document. However, these approaches did not rediscover such a wide
range of structures from the document.

To continue this work, we propose the creation of a document model, in which
the most important layout conventions can be represented at multiple levels of gran-
ularity concurrently. Perceptual conventions can be modelled by the most important
stimuli that are present in document layouts, such as alignment, separation bound-
aries (ruling lines and whitespace rivers), proximity and similarity. Using a proba-
bilistic framework such as that described in [Wang|2002], syntactic conventions could
also be encoded in a fuzzy way, so that that classifications of a given block compete
against each other. For example, columns in an unruled table and columns of text
share many properties (see Section [3.7), and the final classification may depend on
higher-level knowledge, e.g. whether a table has been detected or whether the col-
umn structure fits in with the text columns on the page.

Once an accurate, probabilistic document model has been created, the next task
is to search the problem space in order to find the global maximum. In a similar way
to Wang's approach, this could be achieved by using the result of existing algorithms
(such as those presented in this thesis) as a starting point, followed by iterative im-
provements in a series of edit operations, until the (hopefully global) maximum is
achieved. An alternative approach would be a search based on an exhaustive enu-
meration of all possibilities. However, unless the search tree is extensively pruned to
discount unfruitful search paths, such an approach is likely to be intractable.

We believe that such developments could overcome the most significant limita-
tion of today’s document processing systems and redefine the state of the art in docu-
ment analysis and structure recognition in PDF documents. The resulting data could
then be represented in an appropriate structure, such as a hierarchical graph, in which
any remaining uncertainties could also be represented by edges with fuzzy values.
Using a graph-based wrapping method based on the approach described in Chap-
ter [6 it would be possible to wrap data directly on this structure with unparalleled
robustness and ease of use.

121

Bibliography

ABBYY. Advanced PDF to HTM Converter 1.9. http://pdftransformer.abbyy.
com/, 2006 (Web).

Adobe Systems Inc. PDF Reference and Adobe Extensions to the PDF Specification, June
2009 (Web).

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1974. ISBN 0201000296.

Marco Aiello, Christof Monz, Leon Todoran, and Marcel Worring. Document under-
standing for a broad class of documents. International Journal on Document Analysis
and Recognition, 5(1):1-16, 2002.

Oronzo Altamura, Floriana Esposito, and Donato Malerba. Transforming paper docu-
ments into XML format with WISDOM++. International Journal of Document Analysis
and Recognition, 4(1):2-17, 8 2001.

Anjo Anjewierden. AIDAS: incremental logical structure discovery in PDF docu-
ments. In ICDAR 2001: Proceedings of the 6th International Conference on Document
Analysis and Recognition, pages 374-378, 2001.

Apostolos Antonacopoulos, Stefan Pletschacher, David Bridson, and Christos Pa-
padopoulos. ICDAR 2009 page segmentation competition. In ICDAR 2009: Proceed-
ings of the 10th International Conference on Document Analysis and Recognition, pages
1370-1374, 2009.

Arvind Arasu and Hector Garcia-Molina. Extracting structured data from web pages.
In SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pages 337-348, 2003.

123

http://pdftransformer.abbyy.com/
http://pdftransformer.abbyy.com/

Bibliography

Archilogue. Advanced PDF to HTM Converter 1.9. http://www.archisoftint.com/
logiciels/recr_us.htm, 2006 (Web).

Steven R. Bagley. COG extractor. In DocEng 2006: Proceedings of the 2006 ACM Sympo-
sium on Document Engineering, pages 31-31, 2006.

Steven R. Bagley, David F. Brailsford, and Matthew R. B. Hardy. Creating reusable
well-structured PDF as a sequence of component object graphic (COG) elements.
In DocEng 2003: Proceedings of the 2003 ACM Symposium on Document Engineering,
pages 58-67, 2003.

Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web information ex-
traction with Lixto. In VLDB 2001: Proceedings of the 27th International Conference on
Very Large Databases, pages 119-128, 2001.

Robert Baumgartner, Wolfgang Gatterbauer, and Georg Gottlob. Web data extraction
system. In Encyclopedia of Database Systems, pages 3465-3471. 2009.

Serge Belongie and Jitendra Malik. Matching with shape contexts. In CBAIVL 2000:
Proceedings of the IEEE Workshop on Content-based Access of Image and Video Libraries,
pages 20-26, 2000.

Jean-Luc Bloechle, Denis Lalanne, and Rolf Ingold. OCD: An optimized and canonical
document format. In ICDAR 2009: Proceedings of the 10th International Conference on
Document Analysis and Recognition, pages 236—240, 2009.

Daniel Cabeza and Manuel Hermenegildo. Distributed WWW programming using
(Ciao)-Prolog and the PiLLoW library. Theory and Practice of Logic Programming, 1
(3):251-282, 2001.

Francesca Cesarini, Marco Gori, Simone Marinai, and Giovanni Soda. INFORMys: A
flexible invoice-like form-reader system. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(7):730-745, 1998.

Francesca Cesarini, Simone Marinai, L. Sarti, and Giovanni Soda. Trainable table
location in document images. In ICPR 2002: Proceedings of the 16th International
Conference on Pattern Recognition, volume 3, pages 236-240, 2002.

124

http://www.archisoftint.com/logiciels/recr_us.htm
http://www.archisoftint.com/logiciels/recr_us.htm

Bibliography

Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and Khaled F. Shaalan.
A survey of web information extraction systems. IEEE Transactions on Knowledge
and Data Engineering, 18(10):1411-1428, 2006.

Li Changhua, Yang Bing, and Xie Weixin. Online hand-sketched graphics recognition
based on attributed relational graph matching. In WCICA 2000: Proceedings of the
3rd World Congress on Intelligent Control and Automation, volume 4, pages 2549-2553,
2000.

Hui Chao and Jian Fan. Layout and content extraction for PDF documents. DAS
2004: Proceedings of the 6th International Conference on Document Analysis Systems,
3163:213-224, 2004.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of
graph matching in pattern recognition. International Journal of Pattern Recognition
and Artificial Intelligence, 18(3):265-298, 2004.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(10):1367-1372, 2004.

Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. RoadRunner: Towards
automatic data extraction from large web sites. In VLDB 2001: Proceedings of the
27th International Conference on Very Large Databases, pages 109-118, 2001.

D

Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. In KDD 2001: Proceedings of the 7th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 269-274, 2001.

Hervé Déjean and Jean-Luc Meunier. A system for converting PDF documents into
structured XML format. In DAS 2006: Proceedings of the 7th International Workshop
on Document Analysis Systems, pages 129-140, 2006.

E

David W. Embley, Douglas M. Campbell, Yuan S. Jiang, Stephen W. Liddle, Deryle W.
Lonsdale, Yiu-Kai Ng, and Randy D. Smith. Conceptual-model-based data extrac-
tion from multiple-record web pages. Data & Knowledge Engineering, 31(3):227 —
251, 1999.

125

Bibliography

Etymon Systems Inc. Etymon PJ Tools. http://www.etymon.com/epub.htm, 2009
(Web).

Bettina Fazzinga, Sergio Flesca, Andrea Tagarelli, Salvatore Garruzzo, and Elio Mas-
ciari. A wrapper generation system for PDF documents. In SAC 2008: Proceedings
of the ACM Symposium on Applied Computing, pages 442-446, 2008.

Emilio Ferrara and Giacomo Fiumara. Web data extraction, applications and tech-
niques: A survey. Technical report, Lixto Software GmbH, 2010.

Sergio Flesca, Salvatore Garruzzo, Elio Masciari, and Andrea Tagarelli. Wrapping
PDF documents exploiting uncertain knowledge. In CAiSE 2006: Proceedings of
the 18th International Conference on Advanced Information Systems Engineering, pages
175-189, 2006.

Robert P. Futrelle, Mingyan Shao, Chris Cieslik, and Andrea Elaina Grimes. Extrac-
tion, layout analysis and classification of diagrams in PDF documents. In ICDAR
2003: Proceedings of the 7th International Conference on Document Analysis and Recog-
nition, volume 2, pages 1007-1013, 2003.

G

Edward Green. Model-based analysis of printed tables. PhD thesis, Rensselaer Polytech-
nic Institute, 1996. Adviser: Mukkai Krishnamoorthy.

Edward Green and Mukki Krishnamoorthy. Model-based analysis of printed tables.
In ICDAR 1995: Proceedings of the 3rd International Conference on Document Analysis
and Recognition, volume 1, pages 214-217, 1995.

H

Jaekyu Ha, Robert M. Haralick, and Ihsin T. Phillips. Recursive X-Y cut using bound-
ing boxes of connected components. In ICDAR 1995: Proceedings of the 3rd Interna-
tional Conference on Document Analysis and Recognition, pages 952-955, 1995.

Karim Hadjar, Maurizio Rigamonti, Denis Lalanne, and Rolf Ingold. Xed: a new
tool for extracting hidden structures from electronic documents. In DIAL 2004:
Proceedings of the First International Workshop on Document Image Analysis for Libraries,
pages 212-224, 2004.

126

http://www.etymon.com/epub.htm

Bibliography

Robert M. Haralick. Document image understanding: geometric and logical layout.
In CVPR 1994: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 385-390, 1994.

Tamir Hassan. Object-level document analysis of PDF files. In DocEng 2009: Proceed-
ings of the 9th ACM Symposium on Document Engineering, pages 47-55, 2009a.

Tamir Hassan. GraphWrap—a system for interactive wrapping of PDF documents
using graph matching techniques. In DocEng 2009: Proceedings of the 9th ACM Sym-
posium on Document Engineering (Demonstration), pages 247-248, 2009b.

Tamir Hassan. User-guided wrapping of PDF documents using graph matching tech-
niques. In ICDAR 2009: Proceedings of the 10th International Conference on Document
Analysis and Recognition, pages 631-635, 2009c.

Tamir Hassan and Robert Baumgartner. Table recognition and understanding from
PDF files. In ICDAR 2007: Proceedings of the 9th International Conference on Document
Analysis and Recognition, volume 2, pages 1143-1147, 2007.

Tamir Hassan and Robert Baumgartner. Using graph matching techniques to wrap
data from PDF documents. In WWW 2006: Proceedings of the 15th International Con-
ference on the World Wide Web (Poster track), pages 901-902, 2006.

John E. Hopcroft and Jin K. Wong. Linear time algorithm for isomorphism of pla-
nar graphs (preliminary report). In STOC 1974: Proceedings of the 6th Annual ACM
Symposium on Theory of Computing, pages 172-184, 1974.

Chun-Nan Hsu and Chien-Chi Chang. Finite-state transducers for semi-structured
text mining. In Proceedings of the IJCAI-99 Workshop on Text Mining: Foundations,
Techniques and Applications, 1999.

Jianying Hu, Ramanujan Kashi, Daniel Lopresti, and Gordon Wilfong. Medium-
independent table detection. In Proceedings of Document Recognition and Retrieval
V11, 2000.

Jianying Hu, Ramanujan Kashi, Daniel Lopresti, and Gordon Wilfong. Table structure
recognition and its evaluation. In Proceedings of Document Recognition and Retrieval
VIII, 2001a.

Jianying Hu, Ramanujan Kashi, Daniel Lopresti, Gordon Wilfong, and George Nagy.
Why table ground-truthing is hard. In ICDAR 2001: Proceedings of the 6th Interna-
tional Conference on Document Analysis and Recognition, pages 129-133, 2001b.

127

Bibliography

Jianying Hu, Ramanujan Kashi, Daniel Lopresti, and Gordon Wilfong. Evaluating
the performance of table processing algorithms. International Journal on Document
Analysis and Recognition, 4(3):140-153, March 2002.

Gerald Huck, Peter Fankhauser, Karl Aberer, and Erich Neuhold. Jedi: Extracting
and synthesizing information from the web. In Proceedings of the IFCIS International
Conference on Cooperative Information Systems, page 32, 1998.

Matthew Hurst. The Interpretation of Tables in Texts. PhD thesis, University of Edin-
burgh, 2000.

Yasuto Ishitani. Document transformation system from papers to XML data based on
pivot XML document method. In ICDAR 2003: Proceedings of the 7th International
Conference on Document Analysis and Recognition, pages 250-255, 2003.

Yasuto Ishitani. Logical structure analysis of document images based on emergent
computation. In ICDAR 1999: Proceedings of the 5th International Conference on Docu-
ment Analysis and Recognition, page 189, 1999.

Anil Jain and Yu Zhong. Page segmentation using texture analysis. Pattern Recogni-
tion, 29(5):743-770, 1996.

Duff Johnson. What is tagged PDF? http://www.planetpdf.com/enterprise/
article.asp?ContentID=6067, 2005 (Web).

Thomas Kieninger. Table structure recognition based on robust block segmentation.
In Proceedings of the 5th SPIE Conference on Document Recognition, pages 22-32, 1998.

Thomas Kieninger and Andreas Dengel. Applying the T-Recs table recognition sys-
tem to the business letter domain. In ICDAR 2001: Proceedings of the 6th International
Conference on Document Analysis and Recognition, pages 518-522, 2001.

Thomas Kieninger and Andreas Dengel. An approach towards benchmarking of table
structure recognition results. In ICDAR '05: Proceedings of the Eighth International
Conference on Document Analysis and Recognition, pages 1232-1236, 2005.

128

http://www.planetpdf.com/enterprise/article.asp?ContentID=6067
http://www.planetpdf.com/enterprise/article.asp?ContentID=6067

Bibliography

Thomas Kieninger and Andreas Dengel. A paper-to-HTML table converting system.
In Proceedings of Document Analysis Systems I1I, 1998a.

Thomas Kieninger and Andreas Dengel. The T-Recs table recognition and analysis
system. In LNCS: Selected Papers from the Third IAPR Workshop on Document Analysis
Systems: Theory and Practice, 1998b.

Stefan Klink, Andreas Dengel, and Thomas Kieninger. Document structure analysis
based on layout and textual features. In DAS 2000: Proceedings of the International
Workshop of Document Analysis Systems, 2000.

Mikhail Kruk. PDFTOHTML conversion program. http://pdftohtml.
sourceforge.net/, 2006 (Web).

Bernhard Kriipl and Marcus Herzog. Visually guided bottom-up table detection and
segmentation in Web documents. In WWW 2006: Proceedings of the 15th International
Conference on the World Wide Web (Poster track), pages 933-934, 2006.

Bernhard Kriipl, Marcus Herzog, and Wolfgang Gatterbauer. Using visual cues for
extraction of tabular data from arbitrary HTML documents. In Proceedings of the
14th International Conference on the World Wide Web (Poster track), pages 1000-1001,
2005.

Nicholas Kushmerick, Daniel S. Weld, and Robert Dorrenbos. Wrapper induction for
information extraction. In IJCAI 1997: Proceedings of the International Joint Conference
on Artificial Intelligence, pages 729-737,1997.

Alberto H. F. Laender, Berthier A. Ribeiro-Neto, and Altigran S. da Silva. DEByE—
data extraction by example. Data & Knowledge Engineering, 40(2):121-154, 2002a.

Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S. da Silva, and Juliana S.
Teixeira. A brief survey of Web data extraction tools. ACM SIGMOD Record, 31(2):
84-93, 2002b.

Raymond S.T. Lee and James N.K. Liu. An oscillatory elastic graph matching model
for recognition of offline handwritten Chinese characters. In Proceedings of the 3rd
International Conference on Knowledge-Based Intelligent Information Engineering Sys-
tems, pages 284-287, 1999.

Wen-Jing Li and Tong Lee. Object recognition by sub-scene graph matching. In ICRA
2000: Proceedings of the IEEE International Conference on Robotics and Automation, vol-
ume 2, pages 1459-1464, 2000.

129

http://pdftohtml.sourceforge.net/
http://pdftohtml.sourceforge.net/

Bibliography

Bing Liu, Robert Grossman, and Yanhong Zhai. Mining data records in web pages. In
KDD 2003: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 601-606, 2003.

Josep Lladés, Enric Marti, and Juan José Villanueva. Symbol recognition by error-
tolerant subgraph matching between region adjacency graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(10):1137-1143, 2001.

Daniel P. Lopresti and George Nagy. A tabular survey of automated table process-
ing. In GREC 1999: Selected Papers from the 3rd International Workshop on Graphics
Recognition, Recent Advances, pages 93-120, 2000.

William Lovegrove and David Brailsford. Document analysis of PDF files: methods,
results and implications. Electronic Publishing—Origination, Dissemination and De-
sign, 8(3):207-220, 1995.

Brendan D. McKay. Practical graph isomorphism. In Congressus Numerantium, vol-
ume 30, pages 45-87, 1980.

Bruno T. Messmer. Efficient Graph Matching Algorithms for Preprocessed Model Graphs.
PhD thesis, University of Bern, 1996.

Bruno T. Messmer and Horst Bunke. A decision tree approach to graph and subgraph
isomorphism detection. Pattern Recognition, 32(12):1979-1998, 1999.

Jean-Luc Meunier. Optimized XY-cut for determining a page reading order. In IC-
DAR 2005: Proceedings of the 8th International Conference on Document Analysis and
Recognition, pages 347-351, 2005.

Ion Muslea, Steve Minton, and Craig Knoblock. STALKER: Learning extraction rules
for semistructured, Web-based information sources. In Proceedings of the AAAI-98
Workshop on Artificial Intelligence, pages 74-81, 1998.

George Nagy. Twenty years of document image analysis in PAMI. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(1):38-62, January 2000.

George Nagy and Sharad Seth. Hierarchical representation of optically scanned doc-
uments. In ICPR 1984: Proceedings of the 7th International Conference on Pattern Recog-
nition, 1984.

130

Bibliography

George Nagy, Sharad Seth, and Mahesh Viswanathan. A prototype document image
analysis system for technical journals. Computer, 25(7):10-22, 1992.

Trygve Randen and John Hakon Husey. Segmentation of text/image documents us-
ing texture approaches. In In Proceedings of NOBIM, pages 60-67, 1994.

Juan Raposo, Alberto Pan, Manuel Alvarez, Justo Hidalgo, and Angel Vina. The
Wargo system: Semi-automatic wrapper generation in presence of complex data ac-
cess modes. In DEXA 2002: Proceedings of the 13th International Workshop on Database
and Expert Systems Applications, pages 313-320, 2002.

Maurizio Rigamonti, Oliver Hitz, and Rolf Ingold. A framework for cooperative and
interactive analysis of technical documents. In GREC 2003: Proceedings of the 5th
IAPR Workshop on Graphics Recognition, 2003.

Maurizio Rigamonti, Jean-Luc Bloechle, Karim Hadjar, Denis Lalanne, and Rolf In-
gold. Towards a canonical and structured representation of pdf documents through
reverse engineering. In ICDAR 2005: Proceedings of the Eighth International Conference
on Document Analysis and Recognition, pages 1050-1055, 2005.

Massimo Ruffolo and Ermelinda Oro. PDF-TREX: An approach for recognizing and
extracting tables from PDF documents. In ICDAR 2009: Proceedings of the 10th Inter-
national Conference on Document Analysis and Recognition, pages 906-910, 2009.

Massimo Ruffolo and Ermelinda Oro. PDF-TREX dataset. http://staff.icar.cnr.
it/ruffolo/files/PDF-TREX-Dataset.zip, September 2009 (Web).

Daniela Rus and Kristen Summers. Geometric algorithms and experiments for auto-
mated document structuring. In Mathematical and Computer Modelling, 1997.

Jiirgen Schiirmann, Norbert Bartneck, Thomas Bayer, Jiirgen Franke, Eberhard Man-
dler, and Matthias Oberldnder. Document analysis—from pixels to contents. Pro-
ceedings of the IEEE, 80(7):1101-1119, 1992.

Sargur N. Shari. Document image understanding. In Proceedings of the 1986 ACM Fall
Joint Computer Conference, pages 87-96. ACM, IEEE Computer Society Press, 1986.

131

http://staff.icar.cnr.it/ruffolo/f
http://staff.icar.cnr.it/ruffolo/f
iles/PDF-TREX-Dataset.zip

Bibliography

Statistik Austria. Leistungs- und Strukturstatistik 2007—Hauptergebnisse. http:
//www.statistik.at/web_de/static/leistungs-_und_strukturstatistik_
2007_-_hauptergebnisse_037117.pdf, June 2009 (Web).

P. N. Suganthan and H. Yan. Recognition of handprinted Chinese characters by con-
strained graph matching. Image and Vision Computing, 16(3):191-201, 1998.

Nesime Tatbul, Olga Karpenko, Christian Convey, and Jue Yan. Data integration
services. Technical report, Brown University, Computer Science Department, 2001.

TouchGraph LLC. Touchgraph library (free version). http://touchgraph.
sourceforge.net/, September 2006 (Web).

Shuichi Tsujimoto and Haruo Asada. Understanding multi-articled documents. In
Proceedings of the 10th International Conference on Pattern Recognition, 1990.

Zhuowen Tu and Song-Chun Zhu. Image segmentation by data-driven Markov chain
Monte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):
657-673, 2002.

U

J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the Association for
Computing Machinery, 23(1):31-42, January 1976.

Dept. of Informatics, Univ. Fribourg. XMIllum—The Extensible Markup Illuminator.
http://xmillum.sourceforge.net/, September 2002 (Web).

Xinxin Wang. Tabular Abstraction, Editing and Formatting. PhD thesis, University of
Waterloo, 1996.

Yalin Wang. Document Analysis: Table Structure Understanding and Zone Content Classi-
fication. PhD thesis, University of Washington, 2002.

K.Y. Wong, R.G. Casey, and FM. Wahl. Document analysis system. IBM Journal of
Research and Development, 26:647-656, 1982.

132

http://www.statistik.at/web_de/static/leistungs-_und_strukturstatistik_2007_-_hauptergebnisse_037117.pdf
http://www.statistik.at/web_de/static/leistungs-_und_strukturstatistik_2007_-_hauptergebnisse_037117.pdf
http://www.statistik.at/web_de/static/leistungs-_und_strukturstatistik_2007_-_hauptergebnisse_037117.pdf
http://touchgraph.sourceforge.net/
http://touchgraph.sourceforge.net/
http://xmillum.sourceforge.net/

Bibliography

Y

Burcu Yildiz, Katharina Kaiser, and Silvia Miksch. pdf2table: A method to extract
table information from PDF files. In IICAI 2005: Proceedings of the 2nd Indian Inter-
national Conference on Artificial Intelligence, pages 1773-1785, 2005.

Oren Zamir and Oren Etzioni. Web document clustering: a feasibility demonstration.
In SIGIR 1998: Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 46-54, 1998.

Yanhong Zhai and Bing Liu. Web data extraction based on partial tree alignment. In
WWW 2005: Proceedings of the 14th International Conference on the World Wide Web,
pages 76-85, 2005.

Konstantin Zuyev. Table image segmentation. In ICDAR 1997: Proceedings of the 4th
International Conference on Document Analysis and Recognition, volume 2, pages 705—
708, 1997.

133

Appendix A

Classification of errors in table
recognition

This appendix lists the various recognition errors that were encountered during eval-
uation of our table structure recognition algorithm and PDF-TREX (see Section
and how they were evaluated, i.e. which cells were given which classifications. The
totals for both systems are given in Section[A.3|

A.1 Cell errors

A.1.1 Splitting errors

1. single column in table is detected as two separate columns (see the example in
Figure[A.T):
(a) content of cell is not split; additional blank cell is introduced
e the cell is classified as split full; the resultant blank cell as extra blank
(b) content of cell is split into two (or more) cells

e the original cell is classified as split data; the resultant additional cell(s)
as extra data

2. single, multi-line row is erroneously split into its constituent lines:

e the original cell is classified as split full or split data, depending on whether
the textual data has been split; the resultant additional cell(s) as extra data
or extra empty

135

Appendix A. Classification of errors in table recognition

3. cell spanning several rows is not detected and split into individual rows:

e the original cell is classified as split full or split data, depending on whether
the textual data has been split; the resultant additional cell(s) as extra data
or extra empty

4. cell (e.g. a heading) spanning several columns is not detected and split into its
individual columns

e the original cell is classified as split full or split data, depending on whether
the textual data has been split; the resultant additional cell(s) as extra data
or extra empty

A.1.2 Merging errors

1. horizontal merging of cells in adjacent columns (e.g. due to insufficient whites-
pace between them, as in the example in Figure [A.2):

(a) one or more cells detected as spanning; column structure remains in other
rows

e the spanning cell is classified once as merged; the remaining cells
within it as not recognized; the remaining cells in the column are de-
tected correctly in this case

(b) no cells detected as spanning, i.e. all cells in column are merged and the
entire column disappears

e the spanning cells are classified once as merged; the remaining cells
within them as not recognized; all remaining data and blank cells in
the missing column are also classified as not recognized

2. merging of adjacent rows (i.e. 2 rows are seen as one multi-line row)

e each resulting (incorrect) cell is classified as merged

A.1.3 Other errors

1. cells are split in one direction and merged in another (see the example in Fig-
ure [A.3)

e the horizontal error takes priority; in this example, the cell is classified as
a single merged cell. Void cells resulting from the split are still counted as
normal

136

A.1. Cell errors

e e

&

O B R AR AR AR B

]
.I
.I
]
.I

Descrizione Saldo indiz. | Incrementi Decrementi | Saldo finale
Ratei 1.669 0| 1.269 400

RATEI ATTIVI | 1.669 0] 1.269 400
Risconti 26.676 0| 26.079 597

RISC. ATTIVI 26.676 0 | 26.079 597

Ratei 49.374 0 | 14.467 35.267
RATEI PASSIVI | 49.374 0 | 14.467 35.267

Figure A.1: Example of a table with a split column. The PDF Analyser view is shown

above; the resulting HTML table below

statistik 2007
i Waren-und
atz- Produktions- § Dienstleistungs- dar. zum Brlfttowert— Brutto-
1se wert | kaufe® Wiederverkauf 'S:(:::t)g::ggé: investitionen Code
JEUR*{ in1.000 EUR*} insgesamt in 1.000 EUR* in 1.000 EUR* in 1.000 EUR*
in 1.000 EUR*

Figure A.2: Example of a table with a merged column. This is the Statistik Austria

document from Section5.1].

137

Appendix A. Classification of errors in table recognition

2.

A.2

an entire non-spanning column of a table is seen as spanning several columns,
except for a few individual cells, which do not span the entire width of the
column

e in this case, the spanning cells are classified as having been correctly de-
tected; the non-spanning cells are classified as split full, and the resulting
empty cells as extra blank

cells, which fall within the rectangular boundary of the table, are not recognized
as belonging to the table (e.g. in Figure they lie on the edge of the table and,
due to the text being in a different font size, have been detected as surrounding
text)

e these cells are classified as not recognized; any empty cells in their place
are incorrect empty

Table boundary errors

. additional lines or columns are detected, outside of the table’s actual boundary:

e table is classified as merged into surroundings; the additional cells as in-
correct data or incorrect empty

extra lines or other data is added to a cell along the edge of a table (but no extra
cells are added to the table outside its boundary)

e these cells are classified as merged; other cells in the row or column are
unaffected; the table area classification is also unaffected (i.e., if no other
errors are present, it is classified as found correctly)

lines or columns, which are part of the table, are not detected:

e these are classified as not recognized

. single table is split up into two or more tables across the data cells (see Fig-

ure[A.5)

e the first table is classified as split; the resulting additional tables as extra
table

138

A.2. Table boundary errors

Figure A.3: Example of cells which are split in one direction and merged in another

La voce risulta come di seguito dettagliata:

F.di amm.to al Variazioni F.do amm.to Al 31/12/03
3112102 al 31/12/03

Figure A.4: Example of missing cells within a table boundary

E5ErCIZI0 UL diuvIld SOCLdle.,

31.12.2004 31.12.2003 Differenza

ATTIVO

Immob. immateriali
Immob. materiali
Immob. finanziarie
Rimanenze

Crediti

Disponibilita liquide

Ratei e risconti attivi

Totale attivo

PASSIVO

Patrimonio netto
Fondi per rischi e oneri
Trattam. fine rapporto
Debiti

Ratei e risconti passivi

Totale passivo

I prospetto evidenzia gli investimenti realizzati nell'anno, le

rimanenza di merci e la citnazione creditaria e dehitaria In

Figure A.5: Example of a partially recognized table being split up into two tables.
Blank cells between the two tables are not classified as having been recognized

139

Appendix A. Classification of errors in table recognition

Figure A.6: Example of two horizontally neighbouring tables (or sub-tables) merged
together.

e all cells within the split tables belonging to the original full table are clas-
sified as normal, even if their respective columns or rows have been split
across several tables; cells that have not been detected (e.g. between two
split tables) are classified as not recognized

5. single table is split, but only across the heading/access cells (i.e. the heading
cells are separated from the data; all data cells remain together)

o the table containing all data cells is classified as data cells found; the result-
ing additional tables as extra table

o all cells within the split tables belonging to the original full table are clas-
sified as normal, even if their respective columns or rows have been split
across several tables; cells that have not been detected (e.g. between two
split tables) are classified as not recognized

6. neighbouring tables are merged; rows and/or columns align with each other

o the first table is classified as merged; the resulting additional tables as not
recognized. Cells from both original tables are classified normally

7. two horizontally neighbouring tables (or sub-tables) are merged and rows do

not align (see Figure[A.6)

140

A.3. Classification totals for both systems

e these tables may appear to be part of one large table. But, as their rows
do not align with each other, it was decided to interpret these tables as
separate tables. Therefore, in this example, the first is classified as merged;
the second as not recognized. Cells in both tables are classified normally,
although it is worth noting that a large number of incorrect blank rows and
merged cells result as a result of the merge

A.3 Classification totals for both systems

Based on the classifications described in this Appendix, the results are shown in Ta-
bles[A.Tland

| Table areas \ | Our system | PDF-TREX |

Total areas 126

Found correctly P 67 53
Data cells found TP 22 17
Partially found TP /FP 13 3
Split table TP /FP 8 24
Extra table (from split) FP 12 49
Incorrect table FP 19 22
Merged into surroundings TP 8 9
Merged TP/FP 1 4
Not recognized TN 9 16

Table A.1: Totals of table area classifications in the dataset

| Table cells \ | Our system | PDF-TREX |

Total cells 10120 (9185 data; 935 blank)
Found correctly data TP 7489 8217
Found correctly blank TP 718 806
Split full TP 431 411
Split data TP/FP 159 204
Split blank P 13 27
Extra data FP 228 266
Extra blank FP 935 1260
Incorrect data FpP 105 291
Incorrect blank FP 83 534
Merged TP/FP 28 104

Not recognized data TN 1004 162

Not recognized blank TN 202 83

Table A.2: Totals of table cell classifications in the dataset

141

CURRICULUM VITAE

Tamir Hassan, Meng

Kolingasse 3/18, 1090 Wien, Austria
Tel: +43 676 721 6288 « Email: tamir@tamirhassan.com « Web: http://www.tamirhassan.com

Summary of research interests

In my doctoral thesis, I have dealt with the topic of document understanding of PDF files,
with the goal of making them amenable to wrapping, or user-guided mass data extraction. In
the first part of this work, I have worked on page segmentation and table detection, with the
goal of converting PDF files into HTML so that they can be wrapped using existing methods.
More recently, I have developed the GraphWrap system, a novel approach to wrapping,
which uses methods based on subgraph isomorphism to locate wrapping instances on a
graph-based representation of the document.

A further interest of mine is in document authoring, and I believe that there is still much
room for improvement in current tools and file formats to enable efficient creation, storage
and repurposing of documents. I also have a great passion for digital typography, a field
which I believe still provides opportunities for further advancement, and in which further
research could provide a great contribution.

My doctoral work has been published in international conferences such as ICDAR and
DocEng, and a prototype of GraphWrap has also been demonstrated at CeBIT 2009.

Selected publications

e Hassan, T.: Object-Level Document Analysis of PDF Files, DocEng 2009, Munich,
Germany

e Hassan, T.: GraphWrap — A System for Interactive Wrapping of PDF Documents
Using Graph Matching Techniques (demonstration), DocEng 2009, Munich, Germany

e Hassan, T.: User-Guided Wrapping of PDF Documents Using Graph Matching
Techniques, ICDAR 2009, Barcelona, Spain

e Hassan, T., Baumgartner, R.: Table Recognition and Understanding from PDF Files,
ICDAR 2007, Curitiba, Brazil

e (Carme, J., Ceresna, M., Frolich, O., Gottlob, G., Hassan, T., Herzog, M., Holzinger, W.,
Kriipl, B.: The Lixto Project: Exploring New Frontiers of Web Data Extraction.
BNCOD 2006, Belfast, UK

e Hassan, T., Baumgartner, R.: Using Graph Matching Techniques to Wrap Data from
PDF Documents, WWW 2006 (Poster track), Edinburgh, UK

e Hassan, T., Baumgartner, R.: Intelligent Text Extraction from PDF Documents, short
paper, IAWTIC 2005, Vienna, Austria

Awards and Achievements

e FIT-IT Dissertation Fellowship for the GraphWrap project; a one-year, one-man project
which I initiated, and resulted in a novel approach to supervised data extraction
being developed to prototype stage

e Mobility scholarship from the Akademisch-soziale Arbeitsgemeinschaft Osterreichs to
work for three months (March — May 2010) with Prof. Roger Hersch, Ecole
Polytechnique Fédérale de Lausanne, Switzerland, on parameterized representations
of fonts based on shape components

Education

2005 -2010
2000 - 2004
1998 - 2000
1994 - 1998

Technische Universitdt Wien, Vienna, Austria
Doctorate in Natural Sciences (Dr.rer.nat.)
at the Database and Artificial Intelligence research group
Supervisor: Prof. Georg Gottlob
Thesis topic: User-guided data extraction from print-oriented
documents

University of Warwick, Coventry, West Midlands, UK
Master of Engineering (MEng) in Computer Science
with Honours (upper second class)
Projects undertaken: PDF to HTML Conversion;
A Visual Editor for TV Programme Guide Information

Christ the King Sixth Form College, Lewisham, London, UK

Bexley & Erith Technical High School, Bexley, Kent, UK

Employment
Jan 2008 to date

Apr — Aug 2007

Jan 2005 — Mar 2007

Jul 2004 — Dec 2004

Research Assistant, Database and Artificial Intelligence and
Pattern Recognition and Image Processing research groups,
Technische Universitat Wien, Vienna, Austria

DBALI: worked on research project GraphWrap on the use of graph
matching methods to extract data from PDF files

PRIP: working on comparison of vector graphics in PDF;
supervising undergraduate thesis in watermarking of
images in print media

Solution Consultant, Professional Services Team, Lixto Software
GmbH, Vienna, Austria

Tasks included consulting with customers, and specifying and
building complete data extraction solutions for them using
the Lixto suite of products originally developed at TU Wien

Research Assistant, Database and Artificial Intelligence research
group, Technische Universitdt Wien, Vienna, Austria

Tasks included researching document analysis methods and their
use in data extraction from PDF files

IT Technician, Northbrook School, Lee, London, UK

Tasks included server management, training, problem solving and
playing a key role in the design, specification and
implementation of the school’s plan to migrate from paper-
based records for attendance and assessment (examinations)
to an online database system

Nationality:
Languages spoken:
Driving licence:

British
English (native); German (fluent); Polish (intermediate); French (basic)
Full (manual and automatic); class B

	User-Guided Information Extraction from Print-Oriented Documents

	Abstract

	Kurzfassung

	Contents

	Introduction
	Background
	The PDF Format
	Information extraction on the Web
	Related approaches to wrapping PDF documents
	Contributions of the thesis
	Chapter summary

	Document analysis and understanding
	Introduction
	Related work
	Classical bottom-up pixel-based techniques
	Top-down projection profile based methods
	Manhattan layout
	Techniques for ASCII documents
	Systems for analysing PDF documents
	Document analysis as a computer vision task
	Commercial software

	Summary of our conclusions and approach

	A system for document analysis of PDF files
	Internal representation model
	Coordinate system
	Segment types
	Adjacency graph representation

	Visualization
	Obtaining data from PDF
	Page objects
	Processing the page contents
	Text and graphics state
	Text elements
	Graphic elements

	Page segmentation
	Preprocessing: Initial merging of horizontally adjacent blocks
	The "brickwork" effect

	The ordered-edge segmentation algorithm
	Postprocessing

	Experimental results
	Discussion
	Conclusion and further work
	Exploiting hidden information in PDF documents

	Table recognition
	Tables in the information retrieval field
	Related work in table structure recognition
	The table recognition algorithm
	Candidate column finding
	Table search
	Table classification based on ruling lines
	Rectangular containment expansion

	Table validation and structure understanding
	Column finding
	Row finding
	Table validation

	Experimental evaluation
	Structure recognition issues
	A classification scheme for structure recognition errors
	Ground truthing issues
	Aggregation of results
	Numerical results of both systems
	Discussion

	Conclusion

	Wrapping using the Lixto Visual Developer
	Case study example: Statistik Austria
	Step-by-step wrapper creation
	Discussion

	The graph-based approach to wrapping
	Background
	Technical implementation
	Creation of graph structures
	Introduction to graph matching
	The Ullmann algorithm
	The refinement procedure
	Initial experiments

	Inexact matching
	Incomplete matching
	Multiple match edges
	Multi-step matching algorithm
	Performance issues of the multi-step algorithm
	One-step matching algorithm
	Two types of multiple match edge

	Wrapper creation
	Interactive wrapping using the user interface
	Hierarchical wrapping

	Experiments
	Coastal Point Classifieds
	Pink GmbH component catalogue
	Travel Monthly archives

	Discussion
	Future directions in graph-based wrapping

	Conclusions and further work
	Comparison of the conversion and graph-based wrapping approaches
	Further work: Addressing the discontinuity problem

	Bibliography
	Classification of errors in table recognition
	Cell errors
	Splitting errors
	Merging errors
	Other errors

	Table boundary errors
	Classification totals for both systems

	Curriculum Vitae

